15 0

Proje Grubu: UPAG Sayfa Sayısı: 125 Proje No: 119N024 Proje Bitiş Tarihi: 15.06.2023 Metin Dili: Türkçe DOI: 119N024 İndeks Tarihi: 17-04-2024

Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi

Öz:
Proje kapsamında gerçek gıda matrisi (süt) ve nanopolistiren (PSNPs) arasındaki etkileşimler araştırılmıştır. Süt proteinleri ile polistiren nanopartikülleri arasında protein korona oluşumu gözlenmiştir. Sindirim simülasyonu sırasında sindirimin her aşamasında nanoplastiklerin agregasyon durumunun değiştiği belirlenmiştir. Sindirimin mide aşamasında nanoplastiklerin yoğun agregasyonlar oluşturduğu belirlenmiştir. Polistiren nanoplastiklerin sindirim enzimlerinin (amilaz, pepsin ve lipaz) aktivitelerini farklı oranlarda azalttığı ve enzim aktivitesinin ortamdaki gıda varlığından etkilendiği belirlenmiştir. Nanoplastiklerin translokasyon ve toksik etkilerini belirlemek için 3 boyutlu bağırsak modeli kullanılmıştır. PSNPS ve PET nanopartiküllerin hücre zarından geçerek bağırsak hücresine girdiği gösterilmiştir. Nanoplastikler akut toksisite göstermezken 1.8 µm çaplı polistiren mikroplastikler uzun sürede toksik etki göstermiştir. Proteomiks çalışması nanoplastiklerin toksik etki oluşturmasa bile hücrenin ürettiği protein yapılarında değişikliklere neden olduğunu göstermiştir. Zebra balığı ile yapılan in vivo toksisite çalışmasında nanoplastiklerin balık emriyolarının hayatta kalma oranını azalttığı belirlenmiştir. Nano plastiklerin boyutu ve konsantrasyonu balıkların hayatta kalma oranını etkilemiştir. Aynı zamanda zebra balıklarının sod, cat and gstp2 gen ekspresyonlarında değişim gözlenmiştir. Çalışma genelinde nanoplastiklerin gösterdiği etkilerin partikül boyu ve konsantrasyondan etkilendiği belirlenmiştir. Yapılan çalışma nanoplastiklerin gıda matrisi ile olan etkileşimlerini ve bu etkileşimlerin sindirim simülasyonundan nasıl etkilendiğini ortaya koymuştur. Aynı zamanda nanoplastiklerin in vivo ve in vitro toksik etkileri belirlenmiştir.
Anahtar Kelime: Nanoplastic Microplastic Digestion simulation Toxicity

Investigation of food matrix and nanoplastic interaction and determination of toxicity

Öz:
Within the scope of the project, interactions between real food matrix (milk) and nanopolystyrene (PSNPs) have been investigated. Formation of a protein corona between milk proteins and polystyrene nanoparticles has been observed. During digestion simulation, it has been determined that the aggregation status of nanoplastics changes after each phase of digestion. Notably, intensive aggregation of nanoplastics occurs during the gastric phase of digestion. The activity of digestive enzymes (amylase, pepsin, and lipase) has been found to be reduced by polystyrene nanoplastics to varying extents, with enzyme activity being influenced by the presence of milk in the environment. A 3D intestinal model has been employed to assess the translocation and toxic effects of nanoplastics. Both PSNPS and PET nanoparticles have been shown to traverse the cell membrane and enter intestinal cells. While nanoplastics exhibit no acute toxicity, 1.8 µm diameter polystyrene microplastics display prolonged toxic effects. Proteomics analysis has revealed alterations in cellular protein structures caused by nanoplastics, even in the absence of evident toxic effects. As a result of in vivo toxicity studies conducted by using zebrafish, nanoplastics have been found to reduce the survival rate of fish embryos. The size and concentration of nanoplastics influence fish survival rates. Additionally, changes in sod, cat, and gstp2 gene expressions have been observed in zebrafish. Throughout the study, it has been established that the effects of nanoplastics are influenced by particle size and concentration. This study has elucidated the interactions between nanoplastics and the food matrix, including how these interactions are affected by digestion simulation. Furthermore, both in vivo and in vitro toxic effects of nanoplastics have been identified.
Anahtar Kelime: Nanoplastic Microplastic Digestion simulation Toxicity

Erişim Türü: Bibliyografik
0
0
0
  • Abdolahpur Monikh, F., Holm, S., Kortet, R., Bandekar, M., Kekäläinen, J., Koistinen, A., Leskinen, J. T. T., Akkanen, J., Huuskonen, H., Valtonen, A., Dupuis, L., Peijnenburg, W., Lynch, I., Valsami-Jones, E., & Kukkonen, J. V. K. (2022). Quantifying the trophic transfer of sub-micron plastics in an assembled food chain. Nano Today, 46, 101611. https://doi.org/https://doi.org/10.1016/j.nantod.2022.101611
  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/https://doi.org/10.1016/j.marpolbul.2011.05.030 Anson, M. L. THE ESTIMATION OF PEPSIN, TRYPSIN, PAPAIN, AND CATHEPSIN WITH HEMOGLOBIN. (0022-1295 (Print)).
  • Arias, L. S., Pessan, J. P., Vieira, A. P. M., Lima, T. M. T., Delbem, A. A.-O., & Monteiro, D. A.-O. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. LID - 10.3390/antibiotics7020046 [doi] LID - 46. (2079-6382 (Print)).
  • Bardou, P., Mariette, J., Escudié, F., Djemiel, C., & Klopp, C. (2014). jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 15(1), 293. https://doi.org/10.1186/1471-2105- 15-293
  • Bexiga, M. G., Varela Ja Fau - Wang, F., Wang F Fau - Fenaroli, F., Fenaroli F Fau - Salvati, A., Salvati A Fau - Lynch, I., Lynch I Fau - Simpson, J. C., Simpson Jc Fau - Dawson, K. A., & Dawson, K. A. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. (1743-5404 (Electronic)).
  • Bökel, C., & Brown, N. H. (2002). Integrins in Development: Moving on, Responding to, and Sticking to the Extracellular Matrix. Developmental Cell, 3(3), 311-321. https://doi.org/https://doi.org/10.1016/S1534-5807(02)00265-4
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254. https://doi.org/https://doi.org/10.1016/0003- 2697(76)90527-3
  • Buszewski, B., Jaćkowska, M., Bocian, S., & Dziubakiewicz, E. (2013). Application of the zeta potential for stationary phase characterization in ion chromatography [https://doi.org/10.1002/jssc.201200654]. Journal of Separation Science, 36(1), 156- 163. https://doi.org/https://doi.org/10.1002/jssc.201200654
  • Campbell, S. H., Williamson, P. R., & Hall, B. D. (2017). Microplastics in the gastrointestinal tracts of fish and the water from an urban prairie creek. FACETS, 2, 395-409. https://doi.org/10.1139/facets-2017-0008
  • Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., Canonico, B., & Corsi, I. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. (1879-0291 (Electronic)).
  • Canevarolo, S. o. V. (2019a). Polymer Mechanical Behavior. In Polymer Science (pp. 237- 279). Carl Hanser Verlag GmbH & Co. KG. https://doi.org/doi:10.3139/9781569907269.009 10.3139/9781569907269.009
  • Canevarolo, S. o. V. (2019b). Polymer Thermal Behavior. In Polymer Science (pp. 179-218). Carl Hanser Verlag GmbH & Co. KG. https://doi.org/doi:10.3139/9781569907269.007 10.3139/9781569907269.007
  • Chinn, J. A., Sauter Ja Fau - Phillips, R. E., Jr., Phillips Re Jr Fau - Kao, W. J., Kao Wj Fau - Anderson, J. M., Anderson Jm Fau - Hanson, S. R., Hanson Sr Fau - Ashton, T. R., & Ashton, T. R. Blood and tissue compatibility of modified polyester: thrombosis, inflammation, and healing. (0021-9304 (Print)).
  • Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588-2597. https://doi.org/https://doi.org/10.1016/j.marpolbul.2011.09.025
  • Corbo, C., Molinaro, R., Parodi, A., Toledano Furman, N. E., Salvatore, F., & Tasciotti, E. (2015). The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 11(1), 81-100. https://doi.org/10.2217/nnm.15.188
  • Crawford, C. B., & Quinn, B. (2017a). 3 - Plastic production, waste and legislation. In C. B. Crawford & B. Quinn (Eds.), Microplastic Pollutants (pp. 39-56). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809406-8.00003-7
  • Crawford, C. B., & Quinn, B. (2017b). 4 - Physiochemical properties and degradation. In C. B. Crawford & B. Quinn (Eds.), Microplastic Pollutants (pp. 57-100). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809406-8.00004-9
  • Crawford, C. B., & Quinn, B. (2017c). 5 - Microplastics, standardisation and spatial distribution. In C. B. Crawford & B. Quinn (Eds.), Microplastic Pollutants (pp. 101-130). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809406-8.00005-0
  • Crawford, C. B., & Quinn, B. (2017d). 6 - The interactions of microplastics and chemical pollutants. In C. B. Crawford & B. Quinn (Eds.), Microplastic Pollutants (pp. 131-157). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809406-8.00006-2
  • Crawford, R. J., & Martin, P. J. (2020a). Chapter 1 - General properties of plastics. In R. J. Crawford & P. J. Martin (Eds.), Plastics Engineering (Fourth Edition) (pp. 1-57). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-100709- 9.00001-7
  • Crawford, R. J., & Martin, P. J. (2020b). Chapter 2 - Mechanical behaviour of plastics. In R. J. Crawford & P. J. Martin (Eds.), Plastics Engineering (Fourth Edition) (pp. 59-194). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-08-100709- 9.00002-9
  • Della Torre, C., Bergami, E., Salvati, A., Faleri, C., Cirino, P., Dawson, K. A., & Corsi, I. (2014). Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environmental Science & Technology, 48(20), 12302-12311. https://doi.org/10.1021/es502569w
  • DeLoid, G. M., Wang, Y., Kapronezai, K., Lorente, L. R., Zhang, R., Pyrgiotakis, G., Konduru, N. V., Ericsson, M., White, J. C., De La Torre-Roche, R., Xiao, H., McClements, D. J., & Demokritou, P. (2017). An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Particle and Fibre Toxicology, 14(1), 40. https://doi.org/10.1186/s12989-017-0221-5
  • Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L., Robbens, J., & Vethaak, A. D. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Marine Pollution Bulletin, 98(1), 179-187.
  • https://doi.org/https://doi.org/10.1016/j.marpolbul.2015.06.051 Domenech, J., Hernández, A., Rubio, L., Marcos, R. A.-O. X., & Cortés, C. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. (1432- 0738 (Electronic)).
  • Dong, C.-D., Chen, C.-W., Chen, Y.-C., Chen, H.-H., Lee, J.-S., & Lin, C.-H. (2020). Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of Hazardous Materials, 385, 121575. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.121575
  • Europe, P. (2022). Plastics-the Facts 2022 Retrieved 02.03.2023 from https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
  • Falke, S., & Betzel, C. (2019). Dynamic Light Scattering (DLS). In A. S. Pereira, P. Tavares, & P. Limão-Vieira (Eds.), Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods (pp. 173-193). Springer International Publishing. https://doi.org/10.1007/978-3-030-28247-9_6
  • Feng, S., Zeng, Y., Cai, Z., Wu, J., Chan, L. L., Zhu, J., & Zhou, J. (2021). Polystyrene microplastics alter the intestinal microbiota function and the hepatic metabolism status in marine medaka (Oryzias melastigma). Science of the Total Environment, 759, 143558. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.143558
  • García-Álvarez, R., & Vallet-Regí, M. A.-O. Hard and Soft Protein Corona of Nanomaterials: Analysis and Relevance. LID - 10.3390/nano11040888 [doi] LID - 888. (2079-4991 (Print)).
  • Gigault, J., Halle, A. t., Baudrimont, M., Pascal, P.-Y., Gauffre, F., Phi, T.-L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030-1034. https://doi.org/https://doi.org/10.1016/j.envpol.2018.01.024
  • Gómez-Hens, A. (2005). FLUORESCENCE | Food Applications. In P. Worsfold, A. Townshend, & C. Poole (Eds.), Encyclopedia of Analytical Science (Second Edition) (pp. 186-194). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-369397-7/00172- 2
  • Gündoğdu, S., Çevik, C., & Ataş, N. T. (2020). Stuffed with microplastics: Microplastic occurrence in traditional stuffed mussels sold in the Turkish market. Food Bioscience, 37, 100715. https://doi.org/https://doi.org/10.1016/j.fbio.2020.100715
  • Hirt, N., & Body-Malapel, M. (2020). Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Particle and Fibre Toxicology, 17(1), 57. https://doi.org/10.1186/s12989-020-00387-7
  • Horne, D. S. (2006). Casein micelle structure: Models and muddles. Current Opinion in Colloid & Interface Science, 11(2), 148-153. https://doi.org/https://doi.org/10.1016/j.cocis.2005.11.004
  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127-141. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.01.190
  • Hou, Z., Meng, R., Chen, G., Lai, T., Qing, R., Hao, S., Deng, J., & Wang, B. Distinct accumulation of nanoplastics in human intestinal organoids. (1879-1026 (Electronic)). Hussain, N., Jaitley V Fau - Florence, A. T., & Florence, A. T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. (0169-409X (Print)).
  • Hwang, J., Choi, D., Han, S., Choi, J., & Hong, J. (2019). An assessment of the toxicity of polypropylene microplastics in human derived cells. Science of the Total Environment, 684, 657-669. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.05.071
  • IDF. (1981). Determination of fat contents, gerber butyrometers. Int Stand FIL-IDF 105:1981. Ito, Y., Iwashita, J., Kudoh, A., Kuramata, C., & Murata, J. MUC5B mucin production is upregulated by fibronectin and laminin in human lung epithelial cells via the integrin and ERK dependent pathway. (1347-6947 (Electronic)).
  • Jin, H., Yan, M., Pan, C., Liu, Z., Sha, X., Jiang, C., Li, L., Pan, M., Li, D., Han, X., & Ding, J. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. (1743-8977 (Electronic)).
  • Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. (1879-1026 (Electronic)).
  • Kantha, P., Liu, S. T., Horng, J. L., & Lin, L. Y. Acute exposure to polystyrene nanoplastics impairs skin cells and ion regulation in zebrafish embryos. (1879-1514 (Electronic)).
  • Khan, A., & Jia, Z. (2023). Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience, 26(2), 106061. https://doi.org/https://doi.org/10.1016/j.isci.2023.106061
  • Kihara, S., Ghosh, S., McDougall, D. R., Whitten, A. E., Mata, J. P., Köper, I., & McGillivray, D. J. (2020). Structure of soft and hard protein corona around polystyrene nanoplastics—Particle size and protein types. Biointerphases, 15(5), 051002. https://doi.org/10.1116/6.0000404
  • Kihara, S., van der Heijden, N. J., Seal, C. K., Mata, J. P., Whitten, A. E., Köper, I., & McGillivray, D. J. (2019). Soft and Hard Interactions between Polystyrene Nanoplastics and Human Serum Albumin Protein Corona. Bioconjugate chemistry, 30(4), 1067- 1076. https://doi.org/10.1021/acs.bioconjchem.9b00015
  • Kik, K., Bukowska, B., & Sicińska, P. (2020). Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution, 262, 114297. https://doi.org/https://doi.org/10.1016/j.envpol.2020.114297
  • Kim, H., & Xue, X. (2020). Detection of Total Reactive Oxygen Species in Adherent Cells by 2',7'-Dichlorodihydrofluorescein Diacetate Staining. Journal of visualized experiments : JoVE(160), 10.3791/60682. https://doi.org/10.3791/60682
  • Kosuth, M., Mason, S. A., & Wattenberg, E. V. (2018). Anthropogenic contamination of tap water, beer, and sea salt. PLOS ONE, 13(4), e0194970. https://doi.org/10.1371/journal.pone.0194970
  • Kumar, N., Hoque, M. A., & Sugimoto, M. (2018). Robust volcano plot: identification of differential metabolites in the presence of outliers. BMC Bioinformatics, 19(1), 128. https://doi.org/10.1186/s12859-018-2117-2
  • Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. https://doi.org/10.1038/227680a0 Lakhan, S. E., & Kirchgessner, A. Neuroinflammation in inflammatory bowel disease. (1742- 2094 (Electronic)).
  • Leslie, H. A., van Velzen, M. J. M., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163, 107199. https://doi.org/https://doi.org/10.1016/j.envint.2022.107199
  • Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., Wu, Y., Zhao, H., Ji, X., & Zhang, Y. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. (1879-1298 (Electronic)).
  • Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., Wu, Y., Zhao, H., Ji, X., & Zhang, Y. (2020). Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 244, 125492. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125492
  • Li, S., Liu, H., Gao, R., Abdurahman, A., Dai, J., & Zeng, F. (2018). Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter. Environmental Pollution, 237, 126-132. https://doi.org/https://doi.org/10.1016/j.envpol.2018.02.042
  • Li, X., He, E., Jiang, K., Peijnenburg, W., & Qiu, H. The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. (1879-2448 (Electronic)).
  • Li, X., He, E., Jiang, K., Peijnenburg, W. J. G. M., & Qiu, H. (2021). The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics. Water Research, 190, 116742. https://doi.org/https://doi.org/10.1016/j.watres.2020.116742
  • Li, X., He, E., Xia, B., Liu, Y., Zhang, P., Cao, X., Zhao, L., Xu, X., & Qiu, H. (2021). Protein corona-induced aggregation of differently sized nanoplastics: impacts of protein type and concentration [10.1039/D1EN00115A]. Environmental Science: Nano, 8(6), 1560- 1570. https://doi.org/10.1039/D1EN00115A
  • Li, X., Zhang, T., Lv, W., Wang, H., Chen, H., Xu, Q., Cai, H., & Dai, J. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. (1090-2414 (Electronic)).
  • Li, Z., Zhu, S., Liu, Q., Wei, J., Jin, Y., Wang, X., & Zhang, L. (2020). Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats. Environmental Pollution, 265, 115025. https://doi.org/https://doi.org/10.1016/j.envpol.2020.115025
  • Liang, B., Zhong, Y., Huang, Y., Lin, X., Liu, J., Lin, L., Hu, M., Jiang, J., Dai, M., Wang, B., Zhang, B., Meng, H., Lelaka, J. J. J., Sui, H., Yang, X., & Huang, Z. (2021). Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Particle and Fibre Toxicology, 18(1), 20. https://doi.org/10.1186/s12989-021-00414-1
  • Lindman, S., Lynch I Fau - Thulin, E., Thulin E Fau - Nilsson, H., Nilsson H Fau - Dawson, K. A., Dawson Ka Fau - Linse, S., & Linse, S. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. (1530-6984 (Print)).
  • Liu, G., Jiang, R., You, J., Muir, D. C. G., & Zeng, E. Y. (2020). Microplastic Impacts on Microalgae Growth: Effects of Size and Humic Acid. Environmental Science & Technology, 54(3), 1782-1789. https://doi.org/10.1021/acs.est.9b06187
  • Liu, S., Wu, X., Gu, W., Yu, J., & Wu, B. (2020). Influence of the digestive process on intestinal toxicity of polystyrene microplastics as determined by in vitro Caco-2 models. Chemosphere, 256, 127204. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127204
  • Liu, Z., Li, Y., Sepúlveda, M. S., Jiang, Q., Jiao, Y., Chen, Q., Huang, Y., Tian, J., & Zhao, Y. (2021). Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. Science of the Total Environment, 766, 144249. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144249
  • Lu, S., Zhu, K., Song, W., Song, G., Chen, D., Hayat, T., Alharbi, N. S., Chen, C., & Sun, Y. (2018). Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Science of the Total Environment, 630, 951-959. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.02.296
  • Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183
  • Lunardi, C. N., Gomes, A. J., Rocha, F. S., De Tommaso, J., & Patience, G. S. (2021). Experimental methods in chemical engineering: Zeta potential. The Canadian Journal of Chemical Engineering, 99(3), 627-639. https://doi.org/https://doi.org/10.1002/cjce.23914
  • Lundqvist, M., Sethson I Fau - Jonsson, B.-H., & Jonsson, B. H. Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. (0743-7463 (Print)).
  • Lunov, O., Syrovets, T., Loos, C., Nienhaus, G. U., Mailänder, V., Landfester, K., Rouis, M., & Simmet, T. (2011). Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages. ACS Nano, 5(12), 9648-9657. https://doi.org/10.1021/nn203596e
  • Mahmoudi, M., Lynch, I., Ejtehadi, M. R., Monopoli, M. P., Bombelli, F. B., & Laurent, S. (2011). Protein−Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 111(9), 5610-5637. https://doi.org/10.1021/cr100440g
  • Mahmoudi, M., Sheibani S Fau - Milani, A. S., Milani As Fau - Rezaee, F., Rezaee F Fau - Gauberti, M., Gauberti M Fau - Dinarvand, R., Dinarvand R Fau - Vali, H., & Vali, H. Crucial role of the protein corona for the specific targeting of nanoparticles. (1748-6963 (Electronic)).
  • McKeen, L. W. (2013). 1 - Introduction to Use of Plastics in Food Packaging. In S. Ebnesajjad (Ed.), Plastic Films in Food Packaging (pp. 1-15). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-1-4557-3112-1.00001-6
  • Mi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. (1362-4962 (Electronic)).
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., . . . Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food – an international consensus [10.1039/C3FO60702J]. Food & Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J
  • Moughnyeh, M. M., Brawner, K. M., Kennedy, B. A., Yeramilli, V. A., Udayakumar, N., Graham, J. A., & Martin, C. A. (2021). Stress and the Gut-Brain Axis: Implications for Cancer, Inflammation and Sepsis. Journal of Surgical Research, 266, 336-344. https://doi.org/https://doi.org/10.1016/j.jss.2021.02.055
  • Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543-557. https://doi.org/10.1038/nmat2442
  • Oliveri Conti, G., Ferrante, M., Banni, M., Favara, C., Nicolosi, I., Cristaldi, A., Fiore, M., & Zuccarello, P. (2020). Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research, 187, 109677. https://doi.org/https://doi.org/10.1016/j.envres.2020.109677
  • Patil, S., Sandberg, A., Heckert, E., Self, W., & Seal, S. (2007). Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials, 28(31), 4600-4607. https://doi.org/https://doi.org/10.1016/j.biomaterials.2007.07.029
  • Peacock, A. J., & Calhoun, A. R. (2006). Polymer chemistry : properties and applications. Hanser Gardner Publications.
  • Pérez-Enciso, M., & Tenenhaus, M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. (0340-6717 (Print)).
  • Perrett, R. M., & McArdle, C. A. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. (1664-2392 (Print)).
  • Qiao, J., Chen, R., Wang, M., Bai, R., Cui, X., Liu, Y., Wu, C., & Chen, C. (2021). Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction [10.1039/D1NR00038A]. Nanoscale, 13(19), 8806-8816. https://doi.org/10.1039/D1NR00038A
  • Qiao, R., Deng, Y., Zhang, S., Wolosker, M. B., Zhu, Q., Ren, H., & Zhang, Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. (1879-1298 (Electronic)).
  • Qiao, R., Sheng, C., Lu, Y., Zhang, Y., Ren, H., & Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. (1879-1026 (Electronic)).
  • Radauer-Preiml, I., Andosch, A., Hawranek, T., Luetz-Meindl, U., Wiederstein, M., Horejs- Hoeck, J., Himly, M., Boyles, M., & Duschl, A. (2016). Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Particle and Fibre Toxicology, 13(1), 3. https://doi.org/10.1186/s12989-016-0113-0
  • Roch, S., Rebl, A., Wolski, W., & Brinker, A. (2022). Combined proteomic and gene expression analysis to investigate reduced performance in rainbow trout (Oncorhynchus mykiss) caused by environmentally relevant microplastic exposure. Microplastics and Nanoplastics, 2(1), 14. https://doi.org/10.1186/s43591-022-00034-2
  • Sasidharan, A., Riviere, J. E., & Monteiro-Riviere, N. A. (2015). Gold and silver nanoparticle interactions with human proteins: impact and implications in biocorona formation [10.1039/C4TB01926A]. Journal of Materials Chemistry B, 3(10), 2075-2082. https://doi.org/10.1039/C4TB01926A
  • Schmidt, A., da Silva Brito, W. A., Singer, D., Mühl, M., Berner, J., Saadati, F., Wolff, C., Miebach, L., Wende, K., & Bekeschus, S. Short- and long-term polystyrene nano- and microplastic exposure promotes oxidative stress and divergently affects skin cell architecture and Wnt/beta-catenin signaling. (1743-8977 (Electronic)).
  • Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of Various Microplastics in Human Stool. Annals of Internal Medicine, 171(7), 453-457. https://doi.org/10.7326/M19-0618
  • Selke, S. E. M., & Culter, J. D. (2016). 2 - Basic Concepts and Definitions. In S. E. M. Selke & J. D. Culter (Eds.), Plastics Packaging (Third Edition) (pp. 9-21). Hanser. https://doi.org/https://doi.org/10.3139/9783446437197.002
  • Shan, S., Zhang, Y., Zhao, H., Zeng, T., & Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. (1879- 1298 (Electronic)).
  • Shao, Z., Su, J., Dong, J., Liang, M., Xiao, J., Liu, J., Zeng, Q., Li, Y., Huang, W., & Chen, C. (2022). Aggregation kinetics of polystyrene nanoplastics in gastric environments: Effects of plastic properties, solution conditions, and gastric constituents. Environment International, 170, 107628. https://doi.org/https://doi.org/10.1016/j.envint.2022.107628
  • Sikora, A., Shard, A. G., & Minelli, C. (2016). Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing. Langmuir, 32(9), 2216-2224. https://doi.org/10.1021/acs.langmuir.5b04160
  • Sohal, I. S., Cho, Y. K., O’Fallon, K. S., Gaines, P., Demokritou, P., & Bello, D. (2018). Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano, 12(8), 8115-8128. https://doi.org/10.1021/acsnano.8b02978
  • Song, Y. K., Hong, S. H., Eo, S., Han, G. M., & Shim, W. J. (2020). Rapid Production of Micro- and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. Environmental Science & Technology, 54(18), 11191-11200. https://doi.org/10.1021/acs.est.0c02288
  • Stock, V., Böhmert, L. A.-O., Lisicki, E., Block, R., Cara-Carmona, J., Pack, L. K., Selb, R., Lichtenstein, D., Voss, L., Henderson, C. J., Zabinsky, E., Sieg, H., Braeuning, A., & Lampen, A. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. (1432-0738 (Electronic)).
  • Stock, V., Fahrenson, C., Thuenemann, A., Dönmez, M. H., Voss, L., Böhmert, L., Braeuning, A., Lampen, A., & Sieg, H. (2020). Impact of artificial digestion on the sizes and shapes of microplastic particles. Food and Chemical Toxicology, 135, 111010. https://doi.org/https://doi.org/10.1016/j.fct.2019.111010
  • Sutton, R., Mason, S. A., Stanek, S. K., Willis-Norton, E., Wren, I. F., & Box, C. (2016). Microplastic contamination in the San Francisco Bay, California, USA. Marine Pollution Bulletin, 109(1), 230-235. https://doi.org/https://doi.org/10.1016/j.marpolbul.2016.05.077
  • Taheri, N., Choi, E. L., Nguyen, V. T., Chandra, A., & Hayashi, Y. (2023). Wnt Signaling in the Gastrointestinal Tract in Health and Disease. Physiologia, 3(1), 86-97.
  • Tallec, K., Blard, O., González-Fernández, C., Brotons, G., Berchel, M., Soudant, P., Huvet, A., & Paul-Pont, I. (2019). Surface functionalization determines behavior of nanoplastic solutions in model aquatic environments. Chemosphere, 225, 639-646. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.03.077
  • Tang, R., Zhu, D., Luo, Y., He, D., Zhang, H., El-Naggar, A., Palansooriya, K. N., Chen, K., Yan, Y., Lu, X., Ying, M., Sun, T., Cao, Y., Diao, Z., Zhang, Y., Lian, Y., Chang, S. X., & Cai, Y. (2023). Nanoplastics induce molecular toxicity in earthworm: Integrated multi- omics, morphological, and intestinal microorganism analyses. Journal of Hazardous Materials, 442, 130034. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.130034
  • Thinwa, J., Segovia, J. A., Bose, S., & Dube, P. H. Integrin-mediated first signal for inflammasome activation in intestinal epithelial cells. (1550-6606 (Electronic)).
  • Tlili, S., Jemai, D., Brinis, S., & Regaya, I. (2020). Microplastics mixture exposure at environmentally relevant conditions induce oxidative stress and neurotoxicity in the wedge clam Donax trunculus. Chemosphere, 258, 127344. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127344
  • Tyanova, S., Temu, T., & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nature Protocols, 11(12), 2301-2319. https://doi.org/10.1038/nprot.2016.136
  • Ullah, S., Ahmad, S., Guo, X., Ullah, S., Ullah, S., Nabi, G., & Wanghe, K. (2023). A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals [Review]. Frontiers in Endocrinology, 13. https://www.frontiersin.org/articles/10.3389/fendo.2022.1084236
  • Ullman, T. A., & Itzkowitz, S. H. Intestinal inflammation and cancer. (1528-0012 (Electronic)). Vasti, C., Bedoya, D. A., Rojas, R., & Giacomelli, C. E. (2016). Effect of the protein corona on the colloidal stability and reactivity of LDH-based nanocarriers [10.1039/C5TB02698A]. Journal of Materials Chemistry B, 4(11), 2008-2016. https://doi.org/10.1039/C5TB02698A
  • Vertegel, A. A., Siegel, R. W., & Dordick, J. S. (2004). Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme. Langmuir, 20(16), 6800-6807. https://doi.org/10.1021/la0497200
  • Wang, F., Bexiga, M. G., Anguissola, S., Boya, P., Simpson, J. C., Salvati, A., & Dawson, K. A. (2013). Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles [10.1039/C3NR03249C]. Nanoscale, 5(22), 10868-10876. https://doi.org/10.1039/C3NR03249C
  • Wang, J., Li, Y., Lu, L., Zheng, M., Zhang, X., Tian, H., Wang, W., & Ru, S. (2019). Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environmental Pollution, 254, 113024. https://doi.org/https://doi.org/10.1016/j.envpol.2019.113024
  • Wang, Y., Li, M., Xu, X., Tang, W., Xiong, L., & Sun, Q. (2019). Formation of Protein Corona on Nanoparticles with Digestive Enzymes in Simulated Gastrointestinal Fluids. Journal of Agricultural and Food Chemistry, 67(8), 2296-2306. https://doi.org/10.1021/acs.jafc.8b05702
  • Wen, S., Zhao, Y., Wang, M., Yuan, H., & Xu, H. (2022). Micro(nano)plastics in food system: potential health impacts on human intestinal system. Critical Reviews in Food Science and Nutrition, 1-19. https://doi.org/10.1080/10408398.2022.2116559
  • Winkler, A., Santo, N., Ortenzi, M. A., Bolzoni, E., Bacchetta, R., & Tremolada, P. (2019). Does mechanical stress cause microplastic release from plastic water bottles? Water Research, 166, 115082. https://doi.org/https://doi.org/10.1016/j.watres.2019.115082
  • Wu, B., Wu, X., Liu, S., Wang, Z., & Chen, L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. (1879- 1298 (Electronic)).
  • Wu, X., Feng, Y., Lu, Y., Li, Y., Fan, L., Liu, L., Wu, K., Wang, X., Zhang, B., & He, Z. (2017). Effect of phenolic hydroxyl groups on inhibitory activities of phenylpropanoid glycosides against lipase. Journal of Functional Foods, 38, 510-518. https://doi.org/https://doi.org/10.1016/j.jff.2017.09.022
  • Xiao, Z., Storms, R., & Tsang, A. (2006). A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Analytical Biochemistry, 351(1), 146-148. https://doi.org/https://doi.org/10.1016/j.ab.2006.01.036
  • Xu, D., Ma, Y., Han, X., & Chen, Y. (2021). Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. Journal of Hazardous Materials, 417, 126092. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.126092
  • Yang, D., Shi, H., Li, L., Li, J., Jabeen, K., & Kolandhasamy, P. (2015). Microplastic Pollution in Table Salts from China. Environmental Science & Technology, 49(22), 13622-13627. https://doi.org/10.1021/acs.est.5b03163
  • Yang, H., Wang, M., Zhang, Y., Liu, X., Yu, S., Guo, Y., Yang, S., & Yang, L. (2019). Detailed insight into the formation of protein corona: Conformational change, stability and aggregation. International Journal of Biological Macromolecules, 135, 1114-1122. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.06.014
  • Yin, L., Liu, H., Cui, H., Chen, B., Li, L., & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials, 380, 120861. https://doi.org/https://doi.org/10.1016/j.jhazmat.2019.120861
  • Yu, P., Liu, Z., Wu, D., Chen, M., Lv, W., & Zhao, Y. (2018). Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquatic Toxicology, 200, 28-36. https://doi.org/https://doi.org/10.1016/j.aquatox.2018.04.015
  • Zhang, Q., Zhao, Y., Du, F., Cai, H., Wang, G., & Shi, H. (2020). Microplastic Fallout in Different Indoor Environments. Environmental Science & Technology, 54(11), 6530-6539. https://doi.org/10.1021/acs.est.0c00087
  • Zhang, X., Zhang, J., Zhang, F., & Yu, S. (2017). Probing the binding affinity of plasma proteins adsorbed on Au nanoparticles [10.1039/C7NR01523B]. Nanoscale, 9(14), 4787-4792. https://doi.org/10.1039/C7NR01523B
  • Zheng, J., Tan, Z., Wu, J., Liu, J., Yang, T., & Yang, H. Polystyrene microplastics aggravate acute pancreatitis in mice. (1879-3185 (Electronic))
APA DUDAK ŞEKER F, UYGUN U, ŞEN B, Akram M, Mısırlı N (2023). Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. , 0 - 125. 119N024
Chicago DUDAK ŞEKER Fahriye Ceyda,UYGUN UMRAN,ŞEN BERFİN ECE,Akram Muhammad Usman,Mısırlı Nazım Sergen Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. (2023): 0 - 125. 119N024
MLA DUDAK ŞEKER Fahriye Ceyda,UYGUN UMRAN,ŞEN BERFİN ECE,Akram Muhammad Usman,Mısırlı Nazım Sergen Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. , 2023, ss.0 - 125. 119N024
AMA DUDAK ŞEKER F,UYGUN U,ŞEN B,Akram M,Mısırlı N Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. . 2023; 0 - 125. 119N024
Vancouver DUDAK ŞEKER F,UYGUN U,ŞEN B,Akram M,Mısırlı N Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. . 2023; 0 - 125. 119N024
IEEE DUDAK ŞEKER F,UYGUN U,ŞEN B,Akram M,Mısırlı N "Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi." , ss.0 - 125, 2023. 119N024
ISNAD DUDAK ŞEKER, Fahriye Ceyda vd. "Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi". (2023), 0-125. https://doi.org/119N024
APA DUDAK ŞEKER F, UYGUN U, ŞEN B, Akram M, Mısırlı N (2023). Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. , 0 - 125. 119N024
Chicago DUDAK ŞEKER Fahriye Ceyda,UYGUN UMRAN,ŞEN BERFİN ECE,Akram Muhammad Usman,Mısırlı Nazım Sergen Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. (2023): 0 - 125. 119N024
MLA DUDAK ŞEKER Fahriye Ceyda,UYGUN UMRAN,ŞEN BERFİN ECE,Akram Muhammad Usman,Mısırlı Nazım Sergen Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. , 2023, ss.0 - 125. 119N024
AMA DUDAK ŞEKER F,UYGUN U,ŞEN B,Akram M,Mısırlı N Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. . 2023; 0 - 125. 119N024
Vancouver DUDAK ŞEKER F,UYGUN U,ŞEN B,Akram M,Mısırlı N Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi. . 2023; 0 - 125. 119N024
IEEE DUDAK ŞEKER F,UYGUN U,ŞEN B,Akram M,Mısırlı N "Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi." , ss.0 - 125, 2023. 119N024
ISNAD DUDAK ŞEKER, Fahriye Ceyda vd. "Nanoplastik ve Gıda Matrisi Etkileşimlerinin Incelenmesi ve Toksisitesinin Belirlenmesi". (2023), 0-125. https://doi.org/119N024