Yıl: 2022 Cilt: 0 Sayı: 44 Sayfa Aralığı: 81 - 95 Metin Dili: Türkçe DOI: 10.26650/JGEOG2022-974433 İndeks Tarihi: 25-09-2022

Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler

Öz:
Bu çalışmanın amacı, Anadolu’da Cedrus libani, Abies cilicica ve Juniperus drupacea’nın Son Buzul Maksimumu, günümüz ve gelecekte iklim değişikliklerine olan/olacak tepkilerini tahmin etmektir. Bu amaç kapsamında ele alınan konifer türlerin, küresel iklim değişim senaryolarına bağlı model sonuçlarına göre Anadolu’da zamansal ve mekânsal dağılışları ortaya koyulmuştur. İncelenen türlerin zamansal ve mekânsal dağılışlarında tahminlerde bulunmak üzere fosil polen verileri, günümüz dağılış verileri ve WorldClim’den temin edilen 19 biyoiklimsel değişken kullanılmıştır. Bu değişkenlere PCA yöntemi uygulanmış ve tür dağılış modelleri için 8 değişken belirlenmiştir. Modeller CCSM4 modeli ve gelecek projeksiyonları için RCP 8.5 senaryosu ile üretilmiştir. Modellerin üretilmesi için MaxEnt 3.4.1 ve ArcGIS 10.5 yazılımı kullanılmıştır. Projeksiyonların doğruluklarını ölçen AUC test değerleri ise 0,90’nın üzerindedir. 8 biyoiklimsel değişken içinde modellere en fazla katkı sağlayan değişkenler; Cedrus libani için BIO14 %32,3, BIO8 %23,7, BIO15 %19,2; Abies cilicica için BIO8 %30,5, BIO14 %24,1, BIO15 %19,5; Juniperus drupacea için BIO15 %38,1, BIO12 %30,9, BIO4 %13,1’dir. Elde edilen sonuçlara göre Cedrus libani, Abies cilicica ve Juniperus drupacea Son Buzul Maksimumu’nda Anadolu’nun güneyinde uygun yaşam alanı bulmuştur. Holosen’den itibaren dağılış sahalarını daraltarak günümüz sınırlarına ulaşmışlardır. Gelecekte ise Cedrus libani, Abies cilicica ve Juniperus drupacea’nın ekolojik isteklerinden bir kısmının kaybolacağı ve alanlarını daraltacağı öngörülebilir.
Anahtar Kelime:

Changes in the Distribution Areas of Conifer Trees in Anatolia

Öz:
This study aims to estimate the responses of Cedrus libani, Abies cilicica, and Juniperus drupacea to the Last Glacial Maximum (LGM), present and future climate changes in Anatolia. For this purpose, the temporal and spatial distributions of these conifer species were modeled, based on global climate change scenarios. Accordingly, the temporal and spatial distributions of the studied species are predicted and back-projected using fossil pollen data, occurrence data, and 19 bioclimatic variables collected from the WorldClim database. The principal component analysis (PCA) method was applied to these variables, resulting in the identification of 8 variables for the species distribution model. Past and future climate information is based on CCSM4 and RCP 8.5 scenario was assumed for future projections. Furthermore, both MaxEnt 3.4.1 and ArcGIS 10.5 were utilized to develop the models. At every instance, the area under curve (AUC) test values that determine the accuracy of the projections is >0,90. Among the 8 bioclimatic variables, those that contributed the most to the models were as follows: Cedrus libani, BIO14 (%32,3), BIO8 (%23,7), BIO15 (%19,2); Abies cilicica BIO8 (%30,5), BIO14 (%24,1), BIO15 (%19,5); Juniperus drupacea, BIO15 (%38,1), BIO12 (%30,9), and BIO4 (%13,1). Cedrus libani, Abies cilicica, and Juniperus drupacea found suitable habitats in the south of Anatolia during the LGM, according to the results. From the Holocene onward, their distribution areas narrowed and reached the present-day borders. Future predictions indicate that some of the ecological conditions of the species will be lost, and their areas will narrow.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16, 476–487.
  • Adams, R. (2014). Juniperus of the World, The Genus Juniperus. Bloomington: Trafford Publishing Co. USA.
  • Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95–111.
  • Akkemik, Ü., Arslan, M., Poole, I., Tosun, S., Köse, N., Kılıç, N. K., & Aydın, A. (2016). Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Review of Palaeobotany and Palynology, 235, 31–50.
  • Akkemik, Ü. (2020a). Pinaceae. Ü. Akkemik (Ed.), Doğal-Egzotik Ağaçlar ve Çalılar kitabı içinde, (s. 161-213). İstanbul: Türkiye İş Bankası Kültür Yayınları.
  • Akkemik, Ü. (2020b). A new fossil Cedrus species from the early Miocene of northwestern Turkey and its possible affinities. Palaeoworld, https://doi.org/10.1016/j.palwor.2020.12.003.
  • Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology Letters, 14, 484–492.
  • Arenas, M., Ray, N. Currat, M. & Excoffier, L. (2012). Consequences of range contractions and range shifts on molecular diversity. Molecular Biology and Evolution, 29(1), 207–218.
  • Avcı, M. (2005). Çeşitlilik ve endemizm açısından Türkiye’nin bitki örtüsü. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 13, 27–55.
  • Avcı, M. (2014). Paleocoğrafya. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I kitabı içinde (s. 49-77). İstanbul: Türkiye İş Bankası Kültür Yayınları.
  • Avcı, M., & Avcı, S. (2014a). Yer şekilleri. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I. kitabı içinde (s. 17-27). İstanbul: Türkiye İş Bankası Kültür Yayınları.
  • Avcı, M., & Avcı, S. (2014b). İklim. A. Güner & T. Ekim (Ed.), Resimli Türkiye Florası Cilt I. kitabı içinde (s. 107-115). İstanbul: Türkiye İş Bankası Kültür Yayınları.
  • Behroozian, M., Ejtehadi, H., Peterson, A. T., Memariani, F., & Mesdaghi, M. (2020). Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss.(Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS ONE, 15(8), e0237527.
  • Beridze, B., Walas, Ł., Iszkuło, G., Jasińska, A. K., Kosiński, P., Sękiewicz, K., ... & Dering, M. (2021). Demographic history and range modelling of the East Mediterranean Abies cilicica. Plant and Fungal Systematics, 66(2), 122–132.
  • Beton, D. (2011). Effects of Climate Change on Biodiversity: A Case Study on Four Plant Species Using Distribution Models. (Doktora Tezi), Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Biltekin, D., Popescu, S. M., Suc, J. P., Quézel, P., Jiménez-Moreno, G., Yavuz, N., & Çağatay, M. N. (2015). Anatolia: A long-time plant refuge area documented by pollen records over the last 23 million years. Review of Palaeobotany and Palynology, 215, 1–22.
  • Biltekin, D. (2018). Palynomorphs from a lacustrine sequence provide evidence for palaeoenvironmental changes during the early Miocene in Central Anatolia, Turkey. Canadian Journal of Earth Sciences, 55(5), 505–513.
  • Bottema, S., & Woldring, H. (1984). Late Quaternary vegetation and climate of southwestern Turkey. Part II. Palaeohistoria, 26, 123–149.
  • Bottema, S. (1987). Chronology and climatic phases in the near east from 16,000 to 10,000 BP. Chronologies in the Near East. Oxford: British Archaeological Reports, 295310.
  • Bottema, S., Woldring, H., & Aytuğ, B. (1993). Late Quaternary vegetation history of northern Turkey. Palaeohistoria, 35/36, 13–72.
  • Booth, T. H. (2018). Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecology and Management, 430, 196–203.
  • Boydak, M. (2003). Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management, 178(3), 231–243.
  • Bozkuş H. F. (1986). Toros Göknarı (Abies cilicica Carr.)’nın Türkiye’deki doğal yayılış ve silvikültürel özellikleri. (Doktora Tezi). İstanbul Üniversitesi Orman Fakültesi, İstanbul.
  • Bystriakova, N., Peregrym, M., Erkens, R. H., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and Biodiversity, 10(3), 305–315.
  • CEPF. (2017). Ecosystem Profile-Mediterranean Basin Biodiversity Hotspot. (https://www.cepf.net/our-work/biodiversity-hotspots/ mediterranean-basin). (Erişim 17.04.2021)
  • CEPF (2021). https://www.cepf.net/our-work/biodiversity-hotspots. (Erişim 17.04.2021).
  • CI, (2016). http://www.conservation.org/how/pages/hotspots.aspx (Erişim 17.04.2021).
  • Coode, M., & Cullen, J. (1965a). Cedrus L. In P. Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 71-72). Edinburgh: Edinburgh University Press.
  • Coode, M., & Cullen, J. (1965b). Juniperus L. In P.Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 78-84). Edinburgh: Edinburgh University Press.
  • Coode, M., & Cullen, J. (1965c) Abies Miller. In P. Davis, M. Coode, & J. Cullen (Eds.), Flora of Turkey and the East Aegean Islands Vol.I (pp. 67-70). Edinburgh: Edinburgh University Press.
  • Cuena-Lombraña, A., Fois, M., Fenu, G., Cogoni, D., & Bacchetta, G. (2018). The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. International Journal of Biometeorology, 62(7), 1283–1295.
  • Dagtekin D., Şahan E. A., Denk T, Köse N., & Dalfes H. N. (2020). Past, present and future distributions of Oriental beech (Fagus orientalis) under climate change projections. PloS One, 15(11), e0242280
  • DeLeo, J. M. (1993, April). Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. In 1993 (2nd) International Symposium on Uncertainty Modeling and Analysis. (pp. 318-325).
  • Duan R. Y., Kong X. Q., Huang M. Y., Fan W. Y., & Wang, Z. G. (2014). The predictive performance and stability of six species distribution models. PloS One, 9(11): e112764
  • Elibüyük, M. ve Yılmaz, E. (2010). Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafî Bilimler Dergisi, 8(1), 27–55.
  • Elith, J. (2000). Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In F. Scott, & B. Mark (Eds.), Quantitative methods for conservation biology (pp. 39-58). New York: Springer.
  • Erinç, S. (1984). Klimatoloji ve Metodları. İstanbul: İstanbul Üniversitesi Yayını.
  • EUFORGEN (2021). European forest genetic resources programme, http://www.euforgen.org/species/abies-cilicica/. Erişim (13.07.2021).
  • EUFORGEN (2021). European forest genetic resources programme, http://www.euforgen.org/species/cedrus-libani/. Erişim (13.07.2021).
  • Fady, B. (2005). Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon, 54(4), 905–910.
  • Fady, B., Lefèvre, F., Vendramin, G. G., Ambert, A., Régnier, C., & Bariteau, M. (2008). Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conservation Genetics, 9(1), 85–95.
  • Farjon, A. (2010). A Handbook of the World’s Conifers (Vol. 1-2). Leiden-Boston: Brill.
  • Flantua, S. G. A., & Hooghiemstra, H. (2018). Historical connectivity and mountain biodiversity. In C. Hoorn, A. Perrigo, & A. Antonelli (Eds.), Mountains, climate and biodiversity 1st ed. (pp.171–185). Oxford, UK: Wiley-Blackwell.
  • Gardner, M. (2013). Cedrus libani var. libani. The IUCN Red List of Threatened Species 2013: e.T42305A2970821. https://dx.doi. org/10.2305/IUCN.UK.2013-1.RLTS.T42305A2970821.en. Downloaded on 15 May 2021.
  • Gardner, M., & Knees, S. (2013). Abies cilicica subsp isaurica. The IUCN Red List of Threatened Species 2013: e.T33002A2829405. h t t p s : / / d x . d o i . o rg/10.2305/IUCN.UK.2013-1.RLTS. T33002A2829405.en. Downloaded on 15 May 2021.
  • GBIF.org (2021a) GBIF Occurrence Download https://doi.org/10.15468/ dl.gzu48d (Erişim: 09 Temmuz 2021).
  • GBIF.org (2021b) GBIF Occurrence Download https://doi. org/10.15468/dl.sh8f5r ((Erişim: 09 Temmuz 2021).
  • GBIF.org (2021c) GBIF Occurrence Download https://doi.org/10.15468/ dl.v3rnu7 (Erişim: 09 Temmuz 2021).
  • Günal, N. (1997). Türkiye’de Başlıca Ağaç Türlerinin Coğrafi Dağılışları, Ekolojik ve Floristik Özellikleri. İstanbul: Çantay Kitabevi.
  • Günal, N. (2013). Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcica Çevrimiçi Tematik Türkoloji Dergisi, 1, 1–22.
  • Güner, A., Aslan, S., Ekim, T., Vural, M., & Babac, M. T. (2012). Turkiye bitkileri listesi (damarli bitkiler). İstanbul: Nezahat Gökyigit Botanik Bahçesi Yayinlari Flora Dizisi I.
  • Hajar, L., Khater, C., & Cheddadi, R. (2008). Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. The Holocene, 18, 1089–1099.
  • Hajar, L., François, L., Khater, C., Jomaa, I., Déqué, M., & Cheddadi, R. (2010). Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future. Comptes Rendus Biologies, 333(8), 622–630.
  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965– 1978.
  • Hrivnák, M., Paule, L., Krajmerová, D., Kulaç, Ş., Şevik, H., Turna, İ., ... & Gömöry, D. (2017). Genetic variation in Tertiary relics: The case of eastern-Mediterranean Abies (Pinaceae). Ecology and Evolution, 7(23), 10018–10030.
  • IPCC. (2018). Summary for Policymakers. In: Global Warming of 1. ºC. An IPCC Special Report on the impacts of global warming of 1.5ºC above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Masson-Delmotte, V., P. Zhai, H. Pörtner,…&T. Waterfield (Eds.). WMO, Geneva, Switzerland, 32 pp.
  • İpekdal, K., & Beton, D. (2014). Model predicts a future pine processionary moth risk in Artvin and adjacent regions. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 15(2), 85–95.
  • Knees, S., & Gardner, M. (2013). Abies cilicica subsp. cilicica. The IUCN Red List of Threatened Species 2013: e.T195504A2382755. h t t p s : / / d x . d o i . o rg/10.2305/IUCN.UK.2013-1.RLTS. T195504A2382755.en. (Erişim: 17 April 2021).
  • Knees, S., & Gardner, M. 2013. Abies cilicica subsp.cilicica. The IUCN Red List of Threatened Species 2013: e.T195504A2382755. https:// dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T195504A2382755. en. (Erişim:15 May 2021).
  • Koç, D. E. (2016). Bolkar Dağları’nın bitki örtüsü ve iklim değişikliği. (Doktora Tezi). İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Koc, D. E., Svenning, J. C., & Avci, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69–82.
  • Koç, D. E., Biltekin, D., & Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14(12), 1–13.
  • Kuhn, E., & Gégout, J. C. (2019). Highlighting declines of colddemanding plant species in lowlands under climate warming. Ecography, 42, 36–44.
  • Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21(5), 1251–1266.
  • Kuzucuoğlu, C. (2019). The physical geography of Turkey: an outline. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 7-15). Switzerland: Springer Nature.
  • Kuzucuoğlu, C., Çiner, A., & Kazancı, N. (2019a). Introduction to landscapes and landforms of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 3-5). Switzerland: Springer Nature.
  • Kuzucuoğlu, C., Çiner, A. & Kazancı, N. (2019b). The geomorphological regions of Turkey. In C. Kuzucuoğlu, A. Çiner, & N. Kazancı (Eds.), Landscapes and landforms of Turkey (pp. 41-178). Switzerland: Springer Nature.
  • Liepelt, S., Mayland-Quellhorst, E., Lahme, M., & Ziegenhagen, B. (2010). Contrasting geographical patterns of ancient and modern genetic lineages in Mediterranean Abies species. Plant Systematics and Evolution, 284, 141–151.
  • Linares, J. C. (2011). Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: the roles of long-term climatic change and glacial refugia. Journal of Biogeography, 38(4), 619–630.
  • Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., ... & Hanewinkel, M. (2014). Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?. Journal of Environmental Management, 146, 69–83.
  • Litt, T., & Anselmetti, F. S. (2014). Lake Van deep drilling project PALEOVAN. Quaternary Science Reviews, 104, 1–7.
  • Litt, T., Pickarski, N., Heumann, G., Stockhecke, M., & Tzedakis, P. C. (2014). A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quaternary Science Reviews, 104, 30–41. Liu, T. S. (1971). A monograph of the genus Abies. Taiwan: Department of Forestry, National Taiwan University.
  • Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18(1), 1–12.
  • Mao, K., Hao, G., Liu, J., Adams, R. P., & Milne, R. I. (2010). Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist, 188(1), 254–272.
  • Médail, F., & Diadema, K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36(7), 1333–1345.
  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.
  • Nabout, J. C., Magalhães, M. R., de Amorim Gomes, M. A., & Da Cunha, H. F. (2016). The impact of global climate change on the geographic distribution and sustainable harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environmental Management, 57(4), 814–821.
  • Neotoma Paleoecology Database and Community (2021) https://www. neotomadb.org/ (Erişim: 1 Mayıs 2021).
  • Oliveira, M. D., Hamilton, S. K., Calheiros, D. F., Jacobi, C. M., & Latini, R. O. (2010). Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology, 70(3), 831–840.
  • Özdemir, S., Gülsoy, S., & Ahmet, M. (2020). Predicting the effect of climate change on the potential distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133–142.
  • Palamarev, E. (1989). Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. In Woody Plants-Evolution and Distribution Since the Tertiary (pp. 93-107). Vienna: Springer.
  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259.
  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.
  • Phillips, S. J., Dudík, M., & Schapire, R. E. (2016). Internet. Maxent software for modeling species niches and distributions (Version 3.4. 1). https://biodiversityinformatics.amnh.org/open_source/maxent/ (Erişim 20 Temmuz 2020).
  • Pignatti, S. (1978). Evolutionary trends in Mediterranean flora and vegetation. In E. van der MaarelMarinus J. A. Werger Plant Species and Plant Communities (pp. 157-167). Dordrecht: Springer.
  • Popescu, S. M., Biltekin, D., Winter, H., Suc, J. P., Melinte-Dobrinescu, M. C., Klotz, S., ... & Deaconu, F. (2010). Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: Long pollen records and climatostratigraphy. Quaternary International, 219(1-2), 152–167.
  • Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., ... & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10, 139–146.
  • Rebelo, H ve Jones, G. (2010). Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus Chiroptera: Vespertilionidae). Journal of Applied Ecology, 47, 410–420.
  • Rhoden, C. M., Peterman, W. E., & Taylor, C.A. (2017). Maxentdirected field surveys identify new populations of narrowly endemic habitat specialists. PeerJ, 5, e3632.
  • Sarıkaya, M. A., & Çiner, A. (2017). The late Quaternary glaciation in the Eastern Mediterranean. In P. Hughes & J. Woodward (Eds.), Quaternary Glaciation in the Mediterranean Mountains. (pp. 289- 305). Londra: The Geological Society.
  • Serra-Diaz, J. M., & Franklin, J. (2019). What’s hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distribution, 25, 492– 498.
  • Sobierajska, K., Boratyńska, K., Jasińska, A., Dering, M., Ok, T., Douaihy, B., ... & Boratyński, A. (2016). Effect of the Aegean Sea barrier between Europe and Asia on differentiation in Juniperus drupacea (Cupressaceae). Botanical Journal of the Linnean Society, 180(3), 365–385.
  • Su, H., Bista, M., & Li, M. (2021). Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Scientific Reports, 11(1), 1–14.
  • Suc, J. P., Fauquette, S., Bessedik, M., Bertini, A., Zheng, Z., Clauzon, G., ... & Clet, M. (1999). Neogene vegetation changes in West European and West circum-Mediterranean areas. In J. Agusti, L. Rook & Andrews P (Eds.), Hominid Evolution and Climatic Change in Europe, Vol. 1: Climatic and Environmental Change in the Neogene of Europe (pp.378-388), Cambridge University Press.
  • Svenning, J. C., Normand, S., & Kageyama, M. (2008). Glacial refugia of temperate trees in Europe: insights from species distribution modelling. Journal of Ecology, 96(6), 1117–1127.
  • Türkeş, M., & Erlat, E. (2003). Precipitation changes and variability in Turkey linked to the North Atlantic Oscillation during the period 1930–2000. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(14), 1771–1796.
  • Türkeş, M. (2010). Klimatoloji ve Meteoroloji. İstanbul: Kriter Yayınevi. Ülker, E. D., Tavşanoğlu, Ç., & Perktaş, U. (2018). Ecological niche modelling of pedunculate oak (Quercus robur) supports the ‘expansion–contraction’model of Pleistocene biogeography. Biological Journal of the Linnean Society, 123(2), 338–347.
  • Ünal, Y., Şentürk, Ö., Kavgaci, A., Süel, H., Gülsoy, S., & Oğurlu, I. (2021). Modeling habitat suitability and utilization of the last surviving populations of fallow deer (Dama dama Linnaeus, 1758). Journal of Forestry Research, 1-10. https://doi.org/10.1007/s11676- 021-01391-z
  • Van Zeist, W., Woldring, H., & Stapert, D. (1975). Late Quaternary vegetation and climate of southwestern Turkey. Palaeohistoria, 17:53-144.
  • Van Zeist, W., & Woldring, H. (1978). A postglacial pollen diagram from Lake Van in East Anatolia. Review of Palaeobotany and Palynology, 26(1-4), 249–276.
  • Walas, Ł., Sobierajska, K., Ok, T., Dönmez, A. A., Kanoğlu, S. S., Dagher-Kharrat, M. B., ... & Boratyński, A. (2019). Past, present, and future geographic range of an oro-Mediterranean Tertiary relict: The Juniperus drupacea case study. Regional Environmental Change, 19(5), 1507–1520.
  • Wick, L., Lemcke, G., & Sturm, M. (2003). Evidence of Lateglacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene, 13(5), 665–675.
  • Workie, T. G., & Debella; H. J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia, Global Ecology and Conservation, 13, e00366, https://doi.org/10.1016/j. gecco.2017.e00366.
  • WorldClim (2021). https://www.worldclim.org/data/v1.4/worldclim14. html (Erişim: 15 Ocak 2021).
  • Xu D., Zhuo Z., Wang R., Ye M., & Pu B. (2019). Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Global Ecology and Conservation, 19, art. no. e00691
  • Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., Campbell Grant, E. H., & Veran, S. (2013). Presence-only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution, 4(3), 236–243.
  • Yaltırık, F. & Efe, A. (2000). Dendroloji Ders Kitabı. İstanbul: Çantay Kitabevi.
  • Yi, Y., Cheng, X., Yang, Z., Wieprecht, S., Zhang, S., & Wu, Y. (2017). Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models. Renewable and Sustainable Energy Reviews, 68, 748–762.
APA koç d, Dalfes N, Avci M (2022). Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. , 81 - 95. 10.26650/JGEOG2022-974433
Chicago koç derya evrim,Dalfes Nüzhet,Avci Meral Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. (2022): 81 - 95. 10.26650/JGEOG2022-974433
MLA koç derya evrim,Dalfes Nüzhet,Avci Meral Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. , 2022, ss.81 - 95. 10.26650/JGEOG2022-974433
AMA koç d,Dalfes N,Avci M Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. . 2022; 81 - 95. 10.26650/JGEOG2022-974433
Vancouver koç d,Dalfes N,Avci M Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. . 2022; 81 - 95. 10.26650/JGEOG2022-974433
IEEE koç d,Dalfes N,Avci M "Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler." , ss.81 - 95, 2022. 10.26650/JGEOG2022-974433
ISNAD koç, derya evrim vd. "Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler". (2022), 81-95. https://doi.org/10.26650/JGEOG2022-974433
APA koç d, Dalfes N, Avci M (2022). Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya dergisi (e-dergi), 0(44), 81 - 95. 10.26650/JGEOG2022-974433
Chicago koç derya evrim,Dalfes Nüzhet,Avci Meral Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya dergisi (e-dergi) 0, no.44 (2022): 81 - 95. 10.26650/JGEOG2022-974433
MLA koç derya evrim,Dalfes Nüzhet,Avci Meral Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya dergisi (e-dergi), vol.0, no.44, 2022, ss.81 - 95. 10.26650/JGEOG2022-974433
AMA koç d,Dalfes N,Avci M Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya dergisi (e-dergi). 2022; 0(44): 81 - 95. 10.26650/JGEOG2022-974433
Vancouver koç d,Dalfes N,Avci M Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler. Coğrafya dergisi (e-dergi). 2022; 0(44): 81 - 95. 10.26650/JGEOG2022-974433
IEEE koç d,Dalfes N,Avci M "Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler." Coğrafya dergisi (e-dergi), 0, ss.81 - 95, 2022. 10.26650/JGEOG2022-974433
ISNAD koç, derya evrim vd. "Anadolu’da Konifer Ağaçların Yayılış Alanlarındaki Değişimler". Coğrafya dergisi (e-dergi) 44 (2022), 81-95. https://doi.org/10.26650/JGEOG2022-974433