Yıl: 2021 Cilt: 36 Sayı: 1 Sayfa Aralığı: 177 - 190 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.689230 İndeks Tarihi: 09-11-2022

Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi

Öz:
Bu çalışmada, $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ bileşimine sahip örtülü elektrotlar üretilmiş ve AISI 1010 çeliği üzerine elektrik ark kaynak yöntemi kullanılarak kaplama işlemi gerçekleştirilmiştir. Nihai mikroyapılarda in-situ olarak oluşan ötektik borür fazlarının varlığı gözlemlenmiştir. Bununla birlikte, ötektik altı faz dağılımı gösteren bileşimlerde, başlıca α(Fe, Cr), tetragonal $(Fe, Cr)_2B$, ortorombik $(Fe, Cr)_2B$ ve eser miktarda $(Fe, Cr)_3(C,B)$ fazlarının varlığı tespit edilmiştir. Alümina bilyeye karşı gerçekleştirilen karşılıklı aşınma testinde, kaplama tabakalarının sürtünme katsayısı değerleri artan yük ile birlikte azaldığı ve 0,844-0,65 arasında değiştiği tespit edilmiştir. Bununla birlikte, sürtünme katsayısının değişimi krom oranından bağımsız olarak hareket ettiği gözlemlenmiştir. Aşınma oranının ise artan krom miktarı ile azaldığı buna karşın artan yük ile arttığı gözlemlenmiştir. Aşınma oranının, en düşük değeri 3N yükte $Fe_{13}Cr_5B_2$ bileşimine sahip elektrot için 2,32x10-5 (mm3/m); en yüksek değeri ise 9N yükte $Fe_{15}Cr_3B_2$ bileşimine sahip elektrot için $8,16x10^{-5} (mm^3/m)$ olduğu tespit edilmiştir. $Fe_{(18-X)}Cr_XB_2 (x=3,4,5)$ bileşimine sahip elektrotlar ile kaplanmış yüzey alaşım tabakalarına potansiyodinamik polorizasyon testi uygulanmıştır. Potansiyodinamik polorizasyon testine göre korozyon direncinin artan krom miktarı ile arttığı görülmüştür. Korozyon testine göre, Ikor değerinin artan krom miktarına göre azalarak sırasıyla 2,166, 1,615 ve 1,242 μA/$cm^2$ olarak ölçülmüştür. Ekor değerinin ise artan krom miktarı ile arttığı ve sırasıyla -473,991, -450,056 ve -347,157 mV değerine ulaştığı tespit edilmiştir.
Anahtar Kelime: Sertdolgu yüzey alaşımlama sertlik aşınma korozyon

Effect of chromium content on $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ hardfacing electrode on microstructure, abrasion and corrosion behavior

Öz:
In this study, covered electrodes with $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ composition have been produced and coating was carried out on AISI 1010 steel by using electric arc welding method. It was observed that the presence of eutectic boride phases formed as in-situ in the final microstructures. In addition, ın the compositions showing hypo-eutectic phase distribution, mainly consist of α(Fe-Cr), tetragonal $(Fe, Cr)_2B$, orthorhombic $(Fe, Cr)_2B$ and trace amount of $(Fe, Cr)_3(C,B)$ phases were determined. In the reciprocal wear test against alumina ball, it was determined that the friction coefficient values of the coating layers decreases with increasing load and changed between 0.844-0.65. However, it has been observed that the change of friction coefficient moves independently of the chromium ratio. It was observed that the wear rate decreased with increasing chromium ratio, despite that increased with increasing load. The lowest wear rate was found $2.32x10^{-5} (mm^3/m)$ in 3N load for the electrode with the $Fe_{13}Cr5B_2$ composition and the highest value was found to be $8.16x10^{-5} (mm^3/m)$ for electrode with $Fe_{15}Cr_3B_2$ composition at 9N load. Potentiodynamic polarization test has been performed to the surface alloyed layers coated with electrodes with $Fe_{(18-X)}Cr_XB_2 (x=3,4,5)$ composition. According to the potentiodynamic polarization test, it was observed that the corrosion resistance increases with increasing chromium content. According to corrosion test, the Icor value decreased according to the increasing amount of chromium and was measured as 2.166 and 1.615 and 1.242 μA/$cm^2$, respectively. It was determined that the Ecor value increased with increasing chrome ratio and reached -473.991, -450.056 and -347.157 mV respectively.
Anahtar Kelime: Hardfacing surface alloying hardness wear corrosion

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Gramajo J., Gualco A., Svoboda H., Study of the welding procedure in nanostructured super-hard Fe- (Cr, Mo, W) - (C, B) hardfacing, International Journal of Refractory Metals and Hard Materials, 105178, 2020.
  • 2. Kaya Y., Aktürkoğlu F., Kahraman N., Coating of AISI 8620 steel by plasma spraying and characterization of coating , Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (3), 1111–1122, 2018.
  • 3. Amushahi M.H., Ashrafizadeh F., Shamanian M., Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes, Surface and Coatings Technology, 204 (16), 2723–2728, 2010.
  • 4. Holmberg K., Erdemir A., Influence of tribology on global energy consumption, costs and emissions, Friction, 5 (3), 263–284, 2017.
  • 5. Holmberg K., Kivikytö-Reponen P., Härkisaari P., Valtonen K., Erdemir A., Global energy consumption due to friction and wear in the mining industry, Tribology International, 115 (5), 116–139, 2017.
  • 6. Bedolla P.O., Vorlaufer G., Rechberger C., Bianchi D., Eder S.J., Polak R., Pauschitz A., Combined experimental and numerical simulation of abrasive wear and its application to a tillage machine component, Tribology International, 127 (1), 122–128, 2018.
  • 7. Holmberg K., Siilasto R., Laitinen T., Andersson P., Jäsberg A., Global energy consumption due to friction in paper machines, Tribology International, 62, 58–77, 2013.
  • 8. Gerhardus K., Jeff V., Thopson N., Moghissi O., Gould M., Payer J., International Measures of Prevention , Application , and Economics of Corrosion Technologies Study, NACE IMPACT Report, 1–216, 2006.
  • 9. Kilinc B., Demirkiran S., Sen U., Sen S., Corrosion behavior of nitride and Cr-Al-N coatings formed on AISI D2 steel, Acta Physica Polonica A, 123 (2), 268– 270, 2013.
  • 10. Avcıoğlu C., Özata F., Nirun H., Özbek K., Gürel Soyuer Ö., Sektörel Görünüm: Demir Çelik.
  • 11. Methods D., Process Selection Guide, Surface Hardening of Steels: Understanding the Basics, (Eq 1), 1–16, 2005.
  • 12. Zahiri R., Sundaramoorthy R., Lysz P., Subramanian C., Hardfacing using ferro-alloy powder mixtures by submerged arc welding, Surface and Coatings Technology, 260, 220–229, 2014.
  • 13. Wei D.-B. et al., Microstructure and tribological behavior of W-Mo alloy coating on powder metallurgy gears based on double glow plasma surface alloying technology, Journal of Mining and Metallurgy, Section B: Metallurgy, 55 (2), 227–234, 2019.
  • 14. Wang X., Han F., Liu X., Qu S., Zou Z., Microstructure and wear properties of the Fe – Ti – V – Mo – C hardfacing alloy, 265, 583–589, 2008.
  • 15. Morsy M., El-Kashif E., The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits, Welding in the World, 58 (4), 491–497, 2014.
  • 16. Gençer G.M., Owsalou R.G., Karadeniz S., Determination of abrasive wear resistances of Fe-based hardfacing coated wear plates that were used as grinders in cement production in cases where clinker and farin were used as abrasives, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 0, 2016.
  • 17. Oo H.Z., Muangjunburee P., Wear behaviour of hardfacing on 3.5% chromium cast steel by submerged arc welding, Materials Today: Proceedings, 5 (3, Part 2), 9281–9289, 2018.
  • 18. Chen J.-H., Hsieh C.-C., Hua P.-S., Chang C.-M., Lin C.-M., Wu P.T.-Y., Wu W., Microstructure and abrasive wear properties of Fe-Cr-C hardfacing alloy cladding manufactured by Gas Tungsten Arc Welding (GTAW), Metals and Materials International, 19 (1), 93–98, 2013.
  • 19. Özel S., Yalçın B., Turhan H., Somukıran İ., Fuzzy logic model of wear characteristic of surface alloyed with ferromanganese powder, Journal of the Faculty of Engineering and Architecture of Gazi University, 23 (1), 33–39, 2013.
  • 20. Babu S., Balasubramanian V., Reddy G.M., Balasubramanian T.S., Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing, Materials & Design (1980-2015), 31 (5), 2664–2669, 2010.
  • 21. Bahoosh M., Shahverdi H.R., Farnia A., Macro- indentation fracture mechanisms in a super-hard hardfacing Fe-based electrode, Engineering Failure Analysis, 92, 480–494, 2018.
  • 22. Joo Y.A., Yoon T.S., Park S.H., Lee K.A., Microstructure and compression properties of Fe-Cr-B alloy manufactured using laser metal deposition, Archives of Metallurgy and Materials, 63 (3), 1459– 1462, 2018.
  • 23. Azimi G., Shamanian M., Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys, Journal of Alloys and Compounds, 505 (2), 598–603, 2010.
  • 24. Lu L., Soda H., McLean A., Microstructure and mechanical properties of Fe–Cr–C eutectic composites, Materials Science and Engineering: A, 347 (1), 214– 222, 2003.
  • 25. BERNS H., FISCHER A., Microstructure of Fe-Cr-C Hardfacing Alloys with Additions of Nb, Ti and, B, Materials Characterization, 39 (2), 499–527, 1997.
  • 26. Fan C., Chen M.-C., Chang C.-M., Wu W., Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys, Surface and Coatings Technology, 201 (3), 908–912, 2006.
  • 27. Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr- W and Cr-Mo steels, Metallurgical Transactions A, 11 (5), 739–747, 1980.
  • 28. Yamada K., Ohtani H., Hasebe M., Thermodynamic Analysis of the Fe-Cr-B Ternary System, High Temperature Materials and Processes, 27 (4), 269–284, 2008.
  • 29. Predel B., Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys B-Cr, Madelung O. Eds. Berlin, Heidelberg, 1–3, 1992.
  • 30. Gigolotti J.C.J., Chad V.M., Faria M.I.S.T., Coelho G.C., Nunes C.A., Suzuki P.A., Microstructural characterization of as-cast Cr–B alloys, Materials Characterization, 59 (1), 47–52, 2008.
  • 31. Sorour A.A., Chromik R.R., Gauvin R., Jung I.-H., Brochu M., Understanding the solidification and microstructure evolution during CSC-MIG welding of Fe–Cr–B-based alloy, Materials Characterization, 86, 127–138, 2013.
  • 32. Sorour A.A., Chromik R.R., Brochu M., Tribology of a Fe--Cr--B-Based Alloy Coating Fabricated by a Controlled Short-Circuit MIG Welding Process, Metallography, Microstructure, and Analysis, 2 (4), 223–233, 2013.
  • 33. Lentz J., Röttger A., Großwendt F., Theisen W., Enhancement of hardness, modulus and fracture toughness of the tetragonal (Fe,Cr)2B and orthorhombic (Cr,Fe)2B phases with addition of Cr, Materials & Design, 156, 113–124, 2018.
  • 34. Do J. et al., Effects of Cr and B Contents on Volume Fraction of (Cr,Fe)2B and Hardness in Fe-Based Alloys Used for Powder Injection Molding, Metallurgical and Materials Transactions A, 43 (7), 2237–2250, 2012.
  • 35. Tian Y., Ju J., Fu H., Ma S., Lin J., Lei Y., Effect of Chromium Content on Microstructure , Hardness , and Wear Resistance of As-Cast Fe-Cr-B Alloy, Journal of Materials Engineering and Performance, 28 (10), 6428– 6437, 2019.
  • 36. Son C., Yoon T.A.E.S., Lee S., Correlation of Microstructure with Hardness , Wear Resistance , and Corrosion Resistance of Powder-Injection-Molded Specimens of Fe-Alloy Powders, 1, 1110–1117, 2009.
  • 37. Özel C., Gürgenç T., Yiğit O., Comparison of Microstructure and Microhardness of Fe-Cr-W-B-C and Fe-Cr-B-C Coating on Low Carbon Steel Coated with PTA Method, in International Advanced Researches & Engineering Congress 2017 Proceeding Book, 2017, 743–751, 2017.
  • 38. Rai V.K., Srivastava R., Nath S.K., Ray S., Wear in cast titanium carbide reinforced ferrous composites under dry sliding, Wear, 231 (2), 265–271, 1999.
  • 39. Hu G., Meng H., Liu J., Friction and sliding wear behavior of induction melted FeCrB metamorphic alloy coating, Applied Surface Science, 308, 363–371, 2014.
  • 40. Durmuş H., Çömez N., Gül C., Yurddaşkal M., Yurddaşkal M., Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test, International Journal of Refractory Metals and Hard Materials, 77, 37–43, 2018.
  • 41. Aslan O., Plazma Sprey Kaplama Yöntemiyle Tek ve Çift Katmanlı Kaplanan AISI 316 L Paslanmaz Çeliğinin Korozyon Davranışlarının İncelenmesi, Afyon Kocatepe Üniversitesi, 2015.
  • 42. Galvele J.R., Tafel’s law in pitting corrosion and crevice corrosion susceptibility, Corrosion Science, 47 (12), 3053–3067, 2005.
  • 43. Prince M., Thanu A.J., Gopalakrishnan P., Improvement in wear and corrosion resistance of AISI 1020 steel by high velocity oxy-fuel spray coating containing Ni-Cr- B-Si-Fe-C, High Temperature Materials and Processes, 31 (2), 149–155, 2012.
  • 44. Eren H., Ferritik Paslanmaz Çeliğin Korozyon Davranışına Karbür Yapıcı Elementlerin Etkilerinin İncelenmesi, Fırat Üniversitesi, 2005.
  • 45. Gou J., Wang Y., Li X., Zhou F., Effect of rare earth oxide nano-additives on the corrosion behavior of Fe- based hardfacing alloys in acid, near-neutral and alkaline 3.5 wt.% NaCl solutions, Applied Surface Science, 431, 143–151, 2018.
  • 46. Bhagavathi L.R., Chaudhari G.P., Nath S.K., Mechanical and corrosion behavior of plain low carbon dual-phase steels, Materials & Design, 32 (1), 433–440, 2011.
  • 47. Sun G.F., Zhang Y.K., Zhang M.K., Zhou R., Wang K., Liu C.S., Luo K.Y., Microstructure and corrosion characteristics of 304 stainless steel laser-alloyed with Cr-CrB 2, Applied Surface Science, 295, 94–107, 2014.
  • 48. Gökergil M., Çinko, Nikel Ve Nikel/Kobalt Kaplanmış Yüksek Karbonlu Çeliğin Korozyon Davranışının, Kocaeli Üniversitesi, 2010.
  • 49. Márquez-Herrera A., Fernandez-Muñoz J.L., Zapata- Torres M., Melendez-Lira M., Cruz-Alcantar P., Fe2B coating on ASTM A-36 steel surfaces and its evaluation of hardness and corrosion resistance, Surface and Coatings Technology, 254, 433–439, 2014.
  • 50. Esra P., 6-Amino-m-Kresol Polimerinin Bakır ve Paslanmaz Çelik Üzerine Sentezi ve Korozyon Performansının İncelenmesi, Çukurova Üniversitesi, 2009.
APA KOCAMAN E, KILINÇ B, SEN S, SEN U (2021). Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. , 177 - 190. 10.17341/gazimmfd.689230
Chicago KOCAMAN Engin,KILINÇ BÜLENT,SEN SADUMAN,SEN UGUR Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. (2021): 177 - 190. 10.17341/gazimmfd.689230
MLA KOCAMAN Engin,KILINÇ BÜLENT,SEN SADUMAN,SEN UGUR Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. , 2021, ss.177 - 190. 10.17341/gazimmfd.689230
AMA KOCAMAN E,KILINÇ B,SEN S,SEN U Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. . 2021; 177 - 190. 10.17341/gazimmfd.689230
Vancouver KOCAMAN E,KILINÇ B,SEN S,SEN U Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. . 2021; 177 - 190. 10.17341/gazimmfd.689230
IEEE KOCAMAN E,KILINÇ B,SEN S,SEN U "Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi." , ss.177 - 190, 2021. 10.17341/gazimmfd.689230
ISNAD KOCAMAN, Engin vd. "Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi". (2021), 177-190. https://doi.org/10.17341/gazimmfd.689230
APA KOCAMAN E, KILINÇ B, SEN S, SEN U (2021). Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 177 - 190. 10.17341/gazimmfd.689230
Chicago KOCAMAN Engin,KILINÇ BÜLENT,SEN SADUMAN,SEN UGUR Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no.1 (2021): 177 - 190. 10.17341/gazimmfd.689230
MLA KOCAMAN Engin,KILINÇ BÜLENT,SEN SADUMAN,SEN UGUR Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.36, no.1, 2021, ss.177 - 190. 10.17341/gazimmfd.689230
AMA KOCAMAN E,KILINÇ B,SEN S,SEN U Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(1): 177 - 190. 10.17341/gazimmfd.689230
Vancouver KOCAMAN E,KILINÇ B,SEN S,SEN U Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2021; 36(1): 177 - 190. 10.17341/gazimmfd.689230
IEEE KOCAMAN E,KILINÇ B,SEN S,SEN U "Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36, ss.177 - 190, 2021. 10.17341/gazimmfd.689230
ISNAD KOCAMAN, Engin vd. "Krom içeriğinin $Fe_{(18-x)}Cr_xB_2 (x=3,4,5)$ sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (2021), 177-190. https://doi.org/10.17341/gazimmfd.689230