Yıl: 2022 Cilt: 46 Sayı: 5 Sayfa Aralığı: 1723 - 1732 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3475 İndeks Tarihi: 07-12-2022

Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site

Öz:
Energy storage by supercapacitors with short charging time and high power density is one of the types of electrochemical storage systems. Perovskite oxides have been significantly investigated as promising materials for energy storage in electrochemical systems. In this study, three perovskites, $SrFeO_3, SrCoO_3, and SrCo_{0.5}Fe_{0.5}O_3$, were prepared using the sol-gel method and used as supercapacitor electrode materials. In fact, in this research, two consecutive elements (Fe, Co) from the periodic table that differ by one unit in atomic number are placed in the perovskite structure to study their electrochemical properties for use in supercapacitors. From the obtained results, it was found that Co doping with a ratio of 1/1 (Co/Fe) at B site of $SrFeO_3$ reduced the specific capacitance from 101.687 $F g^{–1}$ to 60.912 $F g^{–1}$ at a scan rate of 10 $mV s^{–1}$. Also, the specific capacitance of $SrCoO_3$ decreased from 68.639 $F g^{–1}$ to 60.912 $F g^{–1}$ at the same substitution rate at B site.
Anahtar Kelime: Supercapacitor perovskite oxygen vacancy partial substitution electrochemical performance electrode materials

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO et al. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters 2021; 19 (1): 375-439. https://doi.org/10.1007/s10311- 020-01075-w
  • 2. Alexander CT, Mefford JT, Saunders J, Forslund RP, Johnston KP et al. Anion-Based Pseudocapacitance of the Perovskite Library La1– xSrxBO3−δ (B = Fe, Mn, Co). ACS applied materials & interfaces 2019; 11 (5): 5084-5094. https://doi.org/10.1021/acsami.8b19592
  • 3. Cao Y, Lin B, Sun Y, Yang H, Zhang X. Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. Journal of Alloys and Compounds 2015; 638: 204-213. https://doi.org/10.1016/j.jallcom.2015.03.054
  • 4. Meng D, Gu H, Lu Q, Zhao Y, Zhu G et al. Advances and Perspectives for the Application of Perovskite Oxides in Supercapacitors. Energy & Fuels 2021; 35 (21): 17353-17371. https://doi.org/10.1021/acs.energyfuels.1c03157
  • 5. Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Science 2014; 7(3): 867-884. https://doi.org/10.1039/C3EE43526A
  • 6. Dubal DP, Gomez-Romero P, Sankapal BR, Holze R. Nickel cobaltite as an emerging material for supercapacitors: an overview. Nano Energy 2015; 11: 377-399. https://doi.org/10.1016/j.nanoen.2014.11.013
  • 7. Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. science 2011; 334 (6058): 917-918. https://doi. org/10.1126/science.1213003
  • 8. Wu P, Cheng S, Yao M, Yang L, Zhu Y et al. Low cost, self standing NiCo2O4@ CNT/CNT multilayer electrode for flexible asymmetric solid state supercapacitors. Advanced Functional Materials 2017; 27 (34): 1702160. https://doi.org/10.1002/adfm.201702160
  • 9. Yang S, Zhou Y, Zhang P, Cai Z, Li Y et al. Preparation of high performance NBR/HNTs nanocomposites using an electron transferring interaction method. Applied Surface Science 2017; 425: 758-764. https://doi.org/10.1016/j.apsusc.2017.07.030
  • 10. Chodankar NR, Dubal DP, Kwon Y, Kim DH. Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high- performance asymmetric supercapacitor. NPG Asia Materials 2017; 9 (8): e419-e419. https://doi.org/10.1038/am.2017.145
  • 11. Hu Q, Yue B, Shao H, Yang F, Wang J et al. Facile syntheses of perovskite type LaMO3 (M = Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. Transition 2020; 1 (2): 7. https://doi.org/10.1016/j.jallcom.2020.157002
  • 12. Lei N, Ma P, Yu B, Li S, Dai J et al. Anion-intercalated supercapacitor electrode based on perovskite-type SrB0.875Nb0.125O3 (B = Mn, Co). Chemical Engineering Journal 2021; 421: 127790. https://doi.org/10.1016/j.cej.2020.127790
  • 13. Li W, Yang Y, Zhang G, Zhang YW. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano letters 2015; 15 (3): 1691-1697. https://doi.org/10.1021/nl504336h
  • 14. Yuan C, Yang L, Hou L, Shen L, Zhang X et al. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science 2012; 5 (7): 7883-7887. https://doi.org/10.1039/C2EE21745G
  • 15. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT et al. Carbon materials for chemical capacitive energy storage. Advanced materials 2011; 23 (42): 4828-4850. https://doi.org/ 10.1002/adma.201100984
  • 16. Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 2013; 5 (1): 72-88. https://doi.org/10.1039/C2NR32040A
  • 17. Lang X, Mo H, Hu X, Tian H. Supercapacitor performance of perovskite La1− xSrxMnO3. Dalton transactions 2017; 46 (40): 13720-13730. https://doi.org/10.1039/C7DT03134C
  • 18. Amali S, Zarei M, Ebratkhahan M, Khataee A. Preparation of Fe@ Fe2O3/3D graphene composite cathode for electrochemical removal of sulfasalazine. Chemosphere 2021; 273: 128581. https://doi.org/10.1016/j.chemosphere.2020.128581
  • 19. Hajiahmadi M, Zarei M, Khataee A. An effective natural mineral-catalyzed heterogeneous electro-Fenton method for degradation of an antineoplastic drug: Modeling by a neural network. Chemosphere 2022; 291: 132810. https://doi.org/10.1016/j.chemosphere.2021.132810
  • 20. Ghasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A et al. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. Journal of environmental management 2020; 267, 110629: 13720-13730. https://doi.org/10.1016/j.jenvman.2020.110629
  • 21. Liu Y, Dinh J, Tade MO, Shao Z. Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect. ACS Applied Materials & Interfaces 2016; 8 (36): 23774-23783. https://doi.org/10.1021/acsami.6b08634
  • 22. Atta NF, Galal A, El-Ads EH. Perovskite nanomaterials–synthesis, characterization, and applications. Perovskite Materials–Synthesis, Characterization, Properties, and Applications; 2016; 107-151. https://doi.org/10.5772/61280
  • 23. Assirey EAR. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharmaceutical Journal 2019; 27 (6): 817-829. https://doi.org/10.1016/j.jsps.2019.05.003
  • 24. Arjun N, Pan GT, Yang TC. The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results in Physics 2017; 7: 920-926.https://doi.org/10.1016/j.rinp.2017.02.013
  • 25. Guo Y, Shao TY, You HH, Li S, Li C et al. Polyvinylpyrrolidone-assisted solvothermal synthesis of porous LaCoO3 nanospheres as supercapacitor electrode. Int J Electrochem Sci 2017; 12: 7121-7127. https://doi.org/10.20964/2017.08.47
  • 26. Shao T, You H, Zhai Z, Liu T, Li M et al. Hollow spherical LaNiO3 supercapacitor electrode synthesized by a facile template-free method. Materials Letters, 2017; 201: 122-124. https://doi.org/10.1016/j.matlet.2017.04.143
  • 27. Tabari T, Singh D, Calisan A, Ebadi M, Tavakkoli H et al. Microwave assisted synthesis of La1−xCaxMnO3 (x = 0, 0.2 and 0.4): Structural and capacitance properties. Ceramics International 2017; 43 (17): 15970-15977. https://doi.org/10.1016/j.ceramint.2017.08.182
  • 28. Wang X, Zhu W, Wang Q. Q, Zhang X. E, Zhang H. C et al. Structural and electrochemical properties of La0.85Sr0.15MnO3 powder as an electrode material for supercapacitor. Journal of Alloys and Compounds 2016; 675: 195-200. https://doi.org/10.1016/j.jallcom.2016.03.048
  • 29. George G, Jackson SL, Luo CQ, Fang D, Luo D et al. Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceramics International 2018; 44 (17): 21982-21992. https://doi.org/10.1016/j.ceramint.2018.08.313
  • 30. Ma PP, Lu QL, Lei N, Liu YK, Yu B et al. Effect of A-site substitution by Ca or Sr on the structure and electrochemical performance of LaMnO3 perovskite. Electrochimica Acta 2020; 332: 135489. https://doi.org/10.1016/j.electacta.2019.135489
  • 31. Ma PP, Zhu B, Lei N, Liu YK, Yu B et al. Effect of Sr substitution on structure and electrochemical properties of perovskite-type LaMn0.9Ni0.1O3 nanofibers. Materials Letters 2019; 252: 23-26. https://doi.org/10.1016/j.matlet.2019.05.090
  • 32. Mo H, Nan H, Lang X, Liu S, Qiao L et al. Influence of calcium doping on performance of LaMnO3 supercapacitors. Ceramics International 2018; 44 (8): 9733-9741. https://doi.org/10.1016/j.ceramint.2018.02.205
  • 33. Portia S, Srinivasan R, Elaiyappillai E, Johnson PM, Ramamoorthy K. Facile synthesis of Eu-doped CaTiO3 and their enhanced supercapacitive performance. Ionics 2020; 26 (7): 3543-3554. https://doi.org/10.1007/s11581-020-03494-9
  • 34. Shafi PM, Mohapatra D, Reddy VP, Dhakal G, Kumar DR et al. Sr-and Fe-substituted LaMnO3 Perovskite: Fundamental insight and possible use in asymmetric hybrid supercapacitor. Energy Storage Materials 2022; 45: 119-129. https://doi.org/10.1016/j.ensm.2021.11.028
  • 35. Vats AK, Kumar A, Sangwan N, Kumar A. Symmetric/asymmetric energy storage device of reduced graphene oxide assisted LaNi0.9Co0.1O3 perovskite nanomaterials. Applied Physics A 2021; 127 (12): 1-12. https://doi.org/10.1007/s00339-021-05113-4
  • 36. Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nature materials 2014; 13 (7): 726-732. https://doi.org/10.1038/nmat4000
  • 37. Zhu L, Liu Y, Su C, Zhou W, Liu M et al. Perovskite SrCo0.9Nb0.1O3−δ as an anion intercalated electrode material for supercapacitors with ultrahigh volumetric energy density. Angewandte Chemie 2016; 128 (33): 9728-9731. doi:10.1002/anie.201603601
  • 38. Dong J, Lu G, Wu F, Xu C, Kang X et al. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Applied Surface Science 2018; 427: 986-993. https://doi.org/10.1016/j.apsusc.2017.07.291
  • 39. Nemudry A, Goldberg E. L, Aguirre M, Alario-Franco M. Á. Electrochemical topotactic oxidation of nonstoichiometric perovskites at ambient temperature. Solid state sciences 2002; 4 (5): 677-690. doi: 10.1016/S1293-2558(02)01313-4
  • 40. Rakhi R. B, Chen W, Cha D, Alshareef H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano letters 2012; 12 (5): 2559-2567. https://doi.org/10.1021/nl300779a
  • 41. Gupta A, Kushwaha V, Mondal R, Singh AN, Prakash R et al. SrFeO3− δ: a novel Fe4+↔ Fe2+ redox mediated pseudocapacitive electrode in aqueous electrolyte. Physical Chemistry Chemical Physics 2022; 24 (18): 11066-11078. https://doi.org/doi.org/10.1039/D1CP04751E
  • 42. Gao Z, Yang W, Yan Y, Wang J, Ma J et al. Synthesis and Exfoliation of Layered α Co(OH)2 Nanosheets and Their Electrochemical Performance for Supercapacitors. European Journal of Inorganic Chemistry 2013. 2013 (27): 4832-4838. https://doi.org/ 10.1002/ ejic.201300525
  • 43. Xu MW, Jia W, Bao SJ, Su Z, Dong B. Novel mesoporous MnO2 for high-rate electrochemical capacitive energy storage. Electrochimica Acta 2010. 55 (18): 5117-5122. https://doi.org/10.1016/j.electacta.2010.04.004
  • 44. Jia H, Cai Y, Zheng X, Lin J, Liang H et al. Mesostructured carbon nanotube-on-MnO2 nanosheet composite for high-performance supercapacitors. ACS applied materials & interfaces 2018; 10 (45): 38963-38969. https://doi.org/10.1021/acsami.8b14109 AHANGARI et al. / Turk J Chem1732
  • 45. Samuel E, Joshi B, Kim YI, Aldalbahi A, Rahaman M et al. ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustainable Chemistry & Engineering2020; 8 (9): 3697-3708. https://doi.org/10.1021/acssuschemeng.9b06796
  • 46. Zhang A, Yue L, Jia D, Cui L, Wei D et al. Cobalt/nickel ions-assisted synthesis of laminated CuO nanospheres based on Cu(OH)2 nanorod arrays for high-performance supercapacitors. ACS applied materials & interfaces 2019; 12 (2): 2591-2600. https://doi.org/10.1021/ acsami.9b20995
  • 47. Kumar A, Sarkar D, Mukherjee S, Patil S, Sarma DD et al. Realizing an asymmetric supercapacitor employing carbon nanotubes anchored to Mn3O4 cathode and Fe3O4 anode. ACS Applied Materials & Interfaces 2018; 10 (49): 42484-42493. https://doi.org/10.1021/ acsami.8b16639
  • 48. Hussain S, Javed M. S, Ullah N, Shaheen A, Aslam N et al. Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications. Ceramics International 2019; 45 (12): 15164-15170. https://doi.org/10.1016/j. ceramint.2019.04.258
APA Ahangari M, Mahmoudi E, DELIBAS N, Mostafaei J, Asghari E, Niaei A (2022). Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. , 1723 - 1732. 10.55730/1300-0527.3475
Chicago Ahangari Mohammad,Mahmoudi Elham,DELIBAS NAGIHAN,Mostafaei Jafar,Asghari Elnaz,Niaei Aligholi Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. (2022): 1723 - 1732. 10.55730/1300-0527.3475
MLA Ahangari Mohammad,Mahmoudi Elham,DELIBAS NAGIHAN,Mostafaei Jafar,Asghari Elnaz,Niaei Aligholi Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. , 2022, ss.1723 - 1732. 10.55730/1300-0527.3475
AMA Ahangari M,Mahmoudi E,DELIBAS N,Mostafaei J,Asghari E,Niaei A Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. . 2022; 1723 - 1732. 10.55730/1300-0527.3475
Vancouver Ahangari M,Mahmoudi E,DELIBAS N,Mostafaei J,Asghari E,Niaei A Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. . 2022; 1723 - 1732. 10.55730/1300-0527.3475
IEEE Ahangari M,Mahmoudi E,DELIBAS N,Mostafaei J,Asghari E,Niaei A "Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site." , ss.1723 - 1732, 2022. 10.55730/1300-0527.3475
ISNAD Ahangari, Mohammad vd. "Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site". (2022), 1723-1732. https://doi.org/10.55730/1300-0527.3475
APA Ahangari M, Mahmoudi E, DELIBAS N, Mostafaei J, Asghari E, Niaei A (2022). Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. Turkish Journal of Chemistry, 46(5), 1723 - 1732. 10.55730/1300-0527.3475
Chicago Ahangari Mohammad,Mahmoudi Elham,DELIBAS NAGIHAN,Mostafaei Jafar,Asghari Elnaz,Niaei Aligholi Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. Turkish Journal of Chemistry 46, no.5 (2022): 1723 - 1732. 10.55730/1300-0527.3475
MLA Ahangari Mohammad,Mahmoudi Elham,DELIBAS NAGIHAN,Mostafaei Jafar,Asghari Elnaz,Niaei Aligholi Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. Turkish Journal of Chemistry, vol.46, no.5, 2022, ss.1723 - 1732. 10.55730/1300-0527.3475
AMA Ahangari M,Mahmoudi E,DELIBAS N,Mostafaei J,Asghari E,Niaei A Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. Turkish Journal of Chemistry. 2022; 46(5): 1723 - 1732. 10.55730/1300-0527.3475
Vancouver Ahangari M,Mahmoudi E,DELIBAS N,Mostafaei J,Asghari E,Niaei A Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site. Turkish Journal of Chemistry. 2022; 46(5): 1723 - 1732. 10.55730/1300-0527.3475
IEEE Ahangari M,Mahmoudi E,DELIBAS N,Mostafaei J,Asghari E,Niaei A "Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site." Turkish Journal of Chemistry, 46, ss.1723 - 1732, 2022. 10.55730/1300-0527.3475
ISNAD Ahangari, Mohammad vd. "Application of $SrFeO_3$ perovskite as electrode material for supercapacitor and investigation of Co-doping effect on the B-site". Turkish Journal of Chemistry 46/5 (2022), 1723-1732. https://doi.org/10.55730/1300-0527.3475