Yıl: 2022 Cilt: 46 Sayı: 7 Sayfa Aralığı: 2690 - 2700 Metin Dili: İngilizce DOI: 10.55730/1300-0098.3295 İndeks Tarihi: 12-12-2022

Spinor representation of framed Mannheim curves

Öz:
In this paper, we obtain spinor with two complex components representations of Mannheim curves of framed curves. Firstly, we give the spinor formulas of the frame corresponding to framed Mannheim curve. Later, we obtain the spinor formulas of the frame corresponding to framed Mannheim partner curve. Moreover, we explain the relationships between spinors corresponding to framed Mannheim pairs and their geometric interpretations. Finally, we present some geometrical results of spinor representations of framed Mannheim curves.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • [1] Cartan É. The Theory of Spinors. Paris: Hermann, 1966 [New York: Dover, (reprinted 1981)].
  • [2] del Castillo GFT, Barrales GS. Spinor formulation of the differential geometry of curve. Revista Colombiana de Matemáticas 2004; 38 (1): 27-34.
  • [3] Erişir T, Kardağ NC. Spinor Representations of involute evolute curves in E3 . Fundamental Journal of Mathematics and Applications 2019; 2 (2): 148-155.
  • [4] Erişir T. On spinor construction of Bertrand curves, AIMS Mathematics 2021; 6 (4): 3583-3591.
  • [5] Fukunaga T, Takahashi M. Existence conditions of framed curves for smooth curves. Journal of Geometry 2017; (108): 763-774.
  • [6] Fukunaga T, Takahashi M. Existence and uniqueness for Legendre curves, Journal of Geometry 2013; 104 (2): 297-307.
  • [7] Honda S, Takahashi M. Framed curves in the Euclidean space. Advances in Geometry 2016; 16 (3): 265-276.
  • [8] Honda S, Takahashi M. Evolutes and focal surfaces of framed immersions in the Euclidean space. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 2020; 150 (1): 497-516.
  • [9] Honda S, Takahashi M. Bertrand and Mannheim curves of framed curves in the 3-dimensional Euclidean space. Turkish Journal of Mathematics 2020; 44 (3): 883-899.
  • [10] Honda S. Rectifying developable surfaces of framed base curves and framed helices. Singularities in Generic Geom- etry, Mathematical Society of Japan, 2018.
  • [11] Kişi İ, Tosun M. Spinor Darboux equations of curves in Euclidean 3-space. Mathematica Moravica 2015; 19 (1): 87-93.
  • [12] Li Y, Pei D, Takahashi M, Yu H. Envelopes of Legendre curves in the unit spherical bundle over the unit sphere. The Quarterly Journal of Mathematics 2018; 69 (2): 631-653.
  • [13] Liu H, Wang F. Mannheim partner curves in 3-space. Journal of Geometry 2008; 88 (1): 120-126.
  • [14] Şenyurt S, Çalışkan A. Spinor formulation of Sabban frame of Curve on S2 , Pure Mathematical Sciences 2015; 4 (1): 37-42.
  • [15] Takahashi M. Legendre curves in the unit spherical bundle over the unit sphere and evolutes. Real and complex singularities, Contemporary Mathematics, 2016; 675: 337-355.
  • [16] Ünal D, Kişi İ, Tosun M. Spinor Bishop equations of curves in Euclidean 3-space. Advances in Applied Clifford Algebras 2013; 23 (3): 757-765.
  • [17] Vivarelli MD. Development of spinors descriptions of rotational mechanics from Euler’s rigid body displacement theorem. Celestial Mechanics 1984; 32: 193-207.
  • [18] Wang Y, Pei D, Gao R. Generic properties of framed rectifying curves. Mathematics 2019; 7 (1): 37.
  • [19] Yazıcı BD, Karakuş SÖ, Tosun M. On the classification of framed rectifying curves in Euclidean space. Mathematical Methods Application Sciences 2021; 1-10.
  • [20] Yazıcı BD, Karakuş SÖ, Tosun M. Framed normal curves in Euclidean space. Tbilisi Mathematical Journal 2021;27-37.
APA DOĞAN YAZICI B, İŞBİLİR Z, Tosun M (2022). Spinor representation of framed Mannheim curves. , 2690 - 2700. 10.55730/1300-0098.3295
Chicago DOĞAN YAZICI BAHAR,İŞBİLİR ZEHRA,Tosun Murat Spinor representation of framed Mannheim curves. (2022): 2690 - 2700. 10.55730/1300-0098.3295
MLA DOĞAN YAZICI BAHAR,İŞBİLİR ZEHRA,Tosun Murat Spinor representation of framed Mannheim curves. , 2022, ss.2690 - 2700. 10.55730/1300-0098.3295
AMA DOĞAN YAZICI B,İŞBİLİR Z,Tosun M Spinor representation of framed Mannheim curves. . 2022; 2690 - 2700. 10.55730/1300-0098.3295
Vancouver DOĞAN YAZICI B,İŞBİLİR Z,Tosun M Spinor representation of framed Mannheim curves. . 2022; 2690 - 2700. 10.55730/1300-0098.3295
IEEE DOĞAN YAZICI B,İŞBİLİR Z,Tosun M "Spinor representation of framed Mannheim curves." , ss.2690 - 2700, 2022. 10.55730/1300-0098.3295
ISNAD DOĞAN YAZICI, BAHAR vd. "Spinor representation of framed Mannheim curves". (2022), 2690-2700. https://doi.org/10.55730/1300-0098.3295
APA DOĞAN YAZICI B, İŞBİLİR Z, Tosun M (2022). Spinor representation of framed Mannheim curves. Turkish Journal of Mathematics, 46(7), 2690 - 2700. 10.55730/1300-0098.3295
Chicago DOĞAN YAZICI BAHAR,İŞBİLİR ZEHRA,Tosun Murat Spinor representation of framed Mannheim curves. Turkish Journal of Mathematics 46, no.7 (2022): 2690 - 2700. 10.55730/1300-0098.3295
MLA DOĞAN YAZICI BAHAR,İŞBİLİR ZEHRA,Tosun Murat Spinor representation of framed Mannheim curves. Turkish Journal of Mathematics, vol.46, no.7, 2022, ss.2690 - 2700. 10.55730/1300-0098.3295
AMA DOĞAN YAZICI B,İŞBİLİR Z,Tosun M Spinor representation of framed Mannheim curves. Turkish Journal of Mathematics. 2022; 46(7): 2690 - 2700. 10.55730/1300-0098.3295
Vancouver DOĞAN YAZICI B,İŞBİLİR Z,Tosun M Spinor representation of framed Mannheim curves. Turkish Journal of Mathematics. 2022; 46(7): 2690 - 2700. 10.55730/1300-0098.3295
IEEE DOĞAN YAZICI B,İŞBİLİR Z,Tosun M "Spinor representation of framed Mannheim curves." Turkish Journal of Mathematics, 46, ss.2690 - 2700, 2022. 10.55730/1300-0098.3295
ISNAD DOĞAN YAZICI, BAHAR vd. "Spinor representation of framed Mannheim curves". Turkish Journal of Mathematics 46/7 (2022), 2690-2700. https://doi.org/10.55730/1300-0098.3295