Yıl: 2023 Cilt: 9 Sayı: 1 Sayfa Aralığı: 237 - 250 Metin Dili: İngilizce DOI: 10.28979/jarnas.1117590 İndeks Tarihi: 24-05-2023

Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach

Öz:
Abstract − The usage of environment-friendly energy converter devices is getting more and more attention as a result of environmental crises and regulations. SOFCs are among the highly efficient chemical to electrical energy converters. Thus, their effectiveness is a significant issue to improve. To increase the efficiency of SOFCs, their properties should be investigated. However, it is costly and time-consuming to test all the important characteristics of a solid oxide fuel cell by experimental methods. Computational methods can contribute to evaluate the influence of each parameter on the performance of the fuel cell. In this paper, a 3D mathematical model of a SOFC is presented. The model can describe the fuel cell’s temperature, the concentration of material, and current distribution inside the cell. Also, the influence of the flow pattern (co-current and counter-current) on the distribution plots and performance of the solid oxide fuel cell is investigated. The results demonstrate that the distribution of the current, concentration, and temperature is firmly related and wherever the concentration of reactants is higher, the temperature and current increase too. Also, the plots of power density and cell potential versus current were consistent with the results of the literature. Moreover, the comparison between two types of flow patterns shows that there is no significant variation when the type of current changes from counter to co-current. However, the performance of the SOFC is mildly better with a co-current flow pattern.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G., & Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and sustainable energy reviews, 82, 353- 368. DOI: https://doi.org/10.1016/j.rser.2017.09.046
  • Ahmad, M. Z., Ahmad, S. H., Chen, R. S., Ismail, A. F., Hazan, R., & Baharuddin, N. A. (2021). Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application. International Journal of Hydrogen Energy. DOI: https://doi.org/10.1016/j.ijhydene.2021.10.094
  • Akkaya, A. V. (2007). Electrochemical model for performance analysis of a tubular SOFC. International Journal of Energy Research, 31(1), 79-98. DOI: https://doi.org/10.1002/er.1238
  • Aydin, Ö., Matsumoto, G., & Shiratori, Y. (2021). Thermal stresses in SOFC stacks: the role of mismatch among thermalconductivity of adjacent components. Turkish Journal of Chemistry, 45(3), 719-736. DOI: https://doi.org/10.3906/kim-2011-48
  • Aygün, B., Sariboğa, V., & Öksüzömer, M. A. F. (2021). Effect of fuel choice on conductivity and morphological properties of samarium doped ceria electrolytes for IT-SOFC. Turkish Journal of Chemistry, 45(5), 1408-1421. DOI: https://doi.org/10.3906/kim-2104-56
  • Burnwal, S. K., Bharadwaj, S., & Kistaiah, P. (2016). Review on MIEC cathode materials for solid oxide fuel cells. Journal of Molecular and Engineering Materials, 4(02), 1630001. DOI: https://doi.org/10.1142/S2251237316300011
  • Caliandro, P., Diethelm, S., & Nakajo, A. (2015). Electrochemical model of a triode solid oxide fuel cell. ECS Transactions, 68(1), 2387. DOI: https://doi.org/10.1149/06801.2387ecst
  • Chiu, H.-C., Jang, J.-H., Yan, W.-M., Li, H.-Y., & Liao, C.-C. (2012). A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Applied energy, 96, 359-370. DOI: https://doi.org/10.1016/j.apenergy.2012.02.060
  • Delibaş, N., Gharamaleki, S. B., Mansouri, M., & Niaei, A., Reduction of operation temperature in SOFCs utilizing perovskites. International Advanced Researches and Engineering Journal, 6(1), 56-67. DOI: https://doi.org/10.35860/iarej.972864
  • Ferriday, T. B., & Middleton, P. H. (2021). Alkaline fuel cell technology-A review. International Journal of Hydrogen Energy, 46(35), 18489-18510. DOI: https://doi.org/10.1016/j.ijhydene.2021.02.203
  • Grondin, D., Deseure, J., Ozil, P., Chabriat, J.-P., Grondin-Perez, B., & Brisse, A. (2013). Solid oxide electrolysis cell 3d simulation using artificial neural network for cathodic process description. Chemical Engineering Research and Design, 91(1), 134-140. DOI: https://doi.org/10.1016/j.cherd.2012.06.003 https://doi.org/10.1002/er.6353
  • Hussain, S., & Yangping, L. (2020). Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transitions, 4(2), 113-126. DOI: https://doi.org/10.1007/s41825-020-00029-8
  • Ilbas, M., & Kumuk, B. (2019). Numerical modelling of a cathode-supported solid oxide fuel cell (SOFC) in comparison with an electrolyte-supported model. Journal of the Energy Institute, 92(3), 682-692. DOI: https://doi.org/10.1016/j.joei.2018.03.004
  • Kakac, S., Pramuanjaroenkij, A., & Zhou, X. Y. (2007). A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy, 32(7), 761-786. DOI: https://doi.org/10.1016/j.ijhydene.2006.11.028
  • Kurahashi, N., Murase, K., & Santander, M. (2022). High-Energy Extragalactic Neutrino Astrophysics. arXiv preprint arXiv:2203.11936. DOI: https://doi.org/10.48550/arXiv.2203.11936
  • Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, A., & Assabumrungrat, S. (2009). Reviews on solid oxide fuel cell technology. Engineering Journal, 13(1), 65-84. DOI: https://doi.org/10.4186/ej.2009.13.1.65
  • Li, P.-W., & Suzuki, K. (2004). Numerical modeling and performance study of a tubular SOFC. Journal of the Electrochemical Society, 151(4), A548. DOI: https://doi.org/10.1149/1.1647569
  • Mohammad Ebrahimi, I. (2017). Three-dimensional modeling of transport phenomena in a planar anodesupported solid oxide fuel cell. Iranian Journal of Hydrogen & Fuel Cell, 4(1), 37-52. DOI: http://doi.org/ 10.22104/IJHFC.2017.2342.1144
  • Ranasinghe, S. N., & Middleton, P. H. (2017). Modelling of single cell solid oxide fuel cells using COMSOL multiphysics. Paper presented at the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). DOI: https://doi.org/ 10.1109/EEEIC.2017.7977790
  • Shaari, N., Kamarudin, S. K., Bahru, R., Osman, S. H., & Md Ishak, N. A. I. (2021). Progress and challenges: Review for direct liquid fuel cell. International Journal of Energy Research, 45(5), 6644-6688. DOI:
  • Shu, L., Sunarso, J., Hashim, S. S., Mao, J., Zhou, W., & Liang, F. (2019). Advanced perovskite anodes for solid oxide fuel cells: A review. International Journal of Hydrogen Energy, 44(59), 31275-31304. DOI: https://doi.org/10.1016/j.ijhydene.2019.09.220
  • Singh, M., Zappa, D., & Comini, E. (2021). Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674. DOI: https://doi.org/10.1016/j.ijhydene.2021.06.020
  • Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and sustainable energy reviews, 6(5), 433-455. DOI: https://doi.org/10.1016/S1364-0321(02)00014-X
  • Suzuki, M., Shikazono, N., Fukagata, K., & Kasagi, N. (2008). Numerical analysis of coupled transport and reaction phenomena in an anode-supported flat-tube solid oxide fuel cell. Journal of power sources, 180(1), 29-40. DOI: https://doi.org/10.1016/j.jpowsour.2008.02.039
  • Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of nonisothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062
  • Tseronis, K., Bonis, I., Kookos, I., & Theodoropoulos, C. (2012). Parametric and transient analysis of nonisothermal, planar solid oxide fuel cells. International Journal of Hydrogen Energy, 37(1), 530-547. DOI: https://doi.org/10.1016/j.ijhydene.2011.09.062
  • Wang, G., Yang, Y., Zhang, H., & Xia, W. (2007). 3-D model of thermo-fluid and electrochemical for planar SOFC. Journal of power sources, 167(2), 398-405. DOI: https://doi.org/10.1016/j.jpowsour.2007.02.019
  • Xia, C., Rauch, W., Wellborn, W., & Liu, M. (2002). Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and solid-state letters, 5(10), A217. DOI: https://doi.org/10.1149/1.1503203
  • Yakabe, H., Ogiwara, T., Hishinuma, M., & Yasuda, I. (2001). 3-D model calculation for planar SOFC. Journal of power sources, 102(1-2), 144-154. DOI: https://doi.org/10.1016/S0378-7753(01)00792-3
  • Yaoxuan, Q., Cheng, F., & Kening, S. (2021). Multiphysics simulation of a solid oxide fuel cell based on COMSOL method. Paper presented at the E3S Web of Conferences. DOI: https://doi.org/10.1051/e3sconf/202124501005
APA Rezvan Leylan S, Ahangari M, DELIBAS N, Bahrami Gharamaleki S, Moradi A, Niaei A (2023). Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. , 237 - 250. 10.28979/jarnas.1117590
Chicago Rezvan Leylan SeyedMahdi,Ahangari Mohammad,DELIBAS NAGIHAN,Bahrami Gharamaleki Soudabeh,Moradi Asghar,Niaei Aligholi Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. (2023): 237 - 250. 10.28979/jarnas.1117590
MLA Rezvan Leylan SeyedMahdi,Ahangari Mohammad,DELIBAS NAGIHAN,Bahrami Gharamaleki Soudabeh,Moradi Asghar,Niaei Aligholi Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. , 2023, ss.237 - 250. 10.28979/jarnas.1117590
AMA Rezvan Leylan S,Ahangari M,DELIBAS N,Bahrami Gharamaleki S,Moradi A,Niaei A Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. . 2023; 237 - 250. 10.28979/jarnas.1117590
Vancouver Rezvan Leylan S,Ahangari M,DELIBAS N,Bahrami Gharamaleki S,Moradi A,Niaei A Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. . 2023; 237 - 250. 10.28979/jarnas.1117590
IEEE Rezvan Leylan S,Ahangari M,DELIBAS N,Bahrami Gharamaleki S,Moradi A,Niaei A "Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach." , ss.237 - 250, 2023. 10.28979/jarnas.1117590
ISNAD Rezvan Leylan, SeyedMahdi vd. "Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach". (2023), 237-250. https://doi.org/10.28979/jarnas.1117590
APA Rezvan Leylan S, Ahangari M, DELIBAS N, Bahrami Gharamaleki S, Moradi A, Niaei A (2023). Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of advanced research in natural and applied sciences (Online), 9(1), 237 - 250. 10.28979/jarnas.1117590
Chicago Rezvan Leylan SeyedMahdi,Ahangari Mohammad,DELIBAS NAGIHAN,Bahrami Gharamaleki Soudabeh,Moradi Asghar,Niaei Aligholi Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of advanced research in natural and applied sciences (Online) 9, no.1 (2023): 237 - 250. 10.28979/jarnas.1117590
MLA Rezvan Leylan SeyedMahdi,Ahangari Mohammad,DELIBAS NAGIHAN,Bahrami Gharamaleki Soudabeh,Moradi Asghar,Niaei Aligholi Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of advanced research in natural and applied sciences (Online), vol.9, no.1, 2023, ss.237 - 250. 10.28979/jarnas.1117590
AMA Rezvan Leylan S,Ahangari M,DELIBAS N,Bahrami Gharamaleki S,Moradi A,Niaei A Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of advanced research in natural and applied sciences (Online). 2023; 9(1): 237 - 250. 10.28979/jarnas.1117590
Vancouver Rezvan Leylan S,Ahangari M,DELIBAS N,Bahrami Gharamaleki S,Moradi A,Niaei A Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach. Journal of advanced research in natural and applied sciences (Online). 2023; 9(1): 237 - 250. 10.28979/jarnas.1117590
IEEE Rezvan Leylan S,Ahangari M,DELIBAS N,Bahrami Gharamaleki S,Moradi A,Niaei A "Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach." Journal of advanced research in natural and applied sciences (Online), 9, ss.237 - 250, 2023. 10.28979/jarnas.1117590
ISNAD Rezvan Leylan, SeyedMahdi vd. "Investigation of Current, Temperature, and Concentration Distribution of a Solid Oxide Fuel Cell with Mathematical Modelling Approach". Journal of advanced research in natural and applied sciences (Online) 9/1 (2023), 237-250. https://doi.org/10.28979/jarnas.1117590