Yıl: 2023 Cilt: 12 Sayı: 3 Sayfa Aralığı: 128 - 133 Metin Dili: İngilizce DOI: 10.46810/tdfd.1326355 İndeks Tarihi: 03-10-2023

Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries

Öz:
Sulfur-containing solid electrolytes are highly attractive to scientists and are increasing day by day. Recently, Li7P3S11, Li10GeP2S12, and Li11Si2PS12 solid electrolytes have been of great interest in literature. The ionic conductivity of these electrolytes can even be reached a value of 10-2 S/cm. For this purpose, Li7P3S11 solid electrolyte is synthesized by mechanical alloying method for all-solid-state Lithium Sulfur batteries in this study. To do this, Li2S and P2S5 ingredients were mixed in a ball mill at certain stoichiometric ratios. The crystallization temperatures of the obtained powders were determined by the DSC thermal analysis method, and they were crystallized under a protective atmosphere at the appropriate crystallization temperature. Then, the obtained powders, very sensitive to the open atmosphere, were subjected to XRD and Raman analysis with a custom-made trap. Structurally characterized powders were electrochemically tested with electrochemical impedance spectroscopy and cyclic voltammetry analyses in a special solid-state cell. It has been observed that the results are compatible with the literature, and it has been determined that the synthesized electrolyte can be used as a suitable candidate for lithium sulfur batteries.
Anahtar Kelime: Energy Storage Lithium-Sulfur Battery Li7P3S11 Solid Electrolyte

Tam Katı Hal Lityum-Sülfür Piller için Li7P3S11 Katı Elektrolit Sentezi

Öz:
Sülfür içeren katı elektrolitler, bilim insanları için oldukça caziptir ve her geçen gün cazibesi artmaktadır. Son zamanlarda Li7P3S11, Li10GeP2S12 ve Li11Si2PS12 katı elektrolitleri literatürde büyük ilgi görmektedir. Bu elektrolitlerin iyonik iletkenliği 10-2 S/cm seviyelerine bile ulaşabilmektedir. Bu amaçla, bu çalışmada tamamen katı hal Lityum Sülfür piller için mekanik alaşımlama yöntemi ile Li7P3S11 katı elektroliti sentezlenmiştir. Bunun için Li2S ve P2S5 bileşenleri bir bilyalı değirmende belirli stokiyometrik oranlarda karıştırılmıştır. Elde edilen tozların kristalleşme sıcaklıkları DSC termal analiz yöntemi ile belirlenmiş ve uygun kristalleşme sıcaklığında koruyucu atmosfer altında kristallendirilmiştir. Daha sonra elde edilen ve açık atmosfere karşı oldukça hassas olan tozlar özel yapım bir tutucu ile XRD ve Raman analizine tabi tutulmuştur. Yapısal olarak karakterize edilen tozlar, özel bir katı hal hücresinde elektrokimyasal empedans spektroskopisi ve çevrimsel voltammetri analizleri ile elektrokimyasal olarak test edilmiştir. Sonuçların literatürle uyumlu olduğu görülmüş ve sentezlenen elektrolitin lityum sülfür piller için uygun bir aday olarak kullanılabileceği belirlenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Gohari, S., et al., Parametric optimization of sulfur@ graphene composites for aqueous and solid-state rechargeable lithium-sulfur batteries. Diamond and Related Materials, 2023: p. 110267.
  • [2] Olanrele, S.O., et al., Tuning of interactions between cathode and lithium polysulfide in Li-S battery by rational halogenation. Journal of Energy Chemistry, 2020. 49: p. 147-152.
  • [3] Li, N., et al., From interlayer to lightweight capping layer: Rational design of mesoporous TiO2 threaded with CNTs for advanced Li–S batteries. Carbon, 2019. 143: p. 523-530.
  • [4] Deng, S., et al., Carbon nanotube-supported polyimide nanoarrays as sulfur host with physical/chemical polysulfide-traps for Li–S batteries. Composites Communications, 2022. 29: p. 101019.
  • [5] Al Salem, H.I., Electrocatalysis In Li-S Batteries. 2016.
  • [6] Zhou, J., P. Chen, W. Wang, and X. Zhang, Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications. Chemical Engineering Journal, 2022. 446: p. 137041.
  • [7] Dietrich, C., et al., Lithium ion conductivity in Li 2 S–P 2 S 5 glasses–building units and local structure evolution during the crystallization of superionic conductors Li 3 PS 4, Li 7 P 3 S 11 and Li 4 P 2 S 7. Journal of Materials Chemistry A, 2017. 5(34): p. 18111-18119.
  • [8] Zhou, J., et al., Wet-chemical synthesis of Li7P3S11 with tailored particle size for solid state electrolytes. Chemical Engineering Journal, 2022. 429: p. 132334.
  • [9] Xu, R., et al., Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochimica Acta, 2016. 219: p. 235-240.
  • [10] Aoki, Y., et al., Chemical and structural changes of 70Li2S-30P2S5 solid electrolyte during heat treatment. Solid State Ionics, 2017. 310: p. 50-55.
  • [11] Tsukasaki, H., et al., Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes. Scientific reports, 2017. 7(1): p. 4142.
  • [12] Tsukasaki, H., S. Mori, S. Shiotani, and H. Yamamura, Ionic conductivity and crystallization process in the Li2S–P2S5 glass electrolyte. Solid State Ionics, 2018. 317: p. 122-126.
  • [13] Kudu, Ö.U., et al., A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S− P2S5 binary system. Journal of Power Sources, 2018. 407: p. 31-43.
  • [14] Judez, X., et al., Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. Journal of Power Sources, 2019. 438: p. 226985.
  • [15] Rangasamy, E., et al., An iodide-based Li7P2S8I superionic conductor. Journal of the American Chemical Society, 2015. 137(4): p. 1384-1387.
  • [16] Zhang, Q., et al., Fe 3 S 4@ Li 7 P 3 S 11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. Journal of Materials Chemistry A, 2017. 5(45): p. 23919-23925.
  • [17] Sobolciak, P., M. Karkri, M.A. Al-Maadeed, and I. Krupa, Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renewable Energy, 2016. 88: p. 372-382.
  • [18] Kissinger, H.E., Differential thermal analysis. J. Res. Natl. Bur. Stand, 1956. 57(4): p. 217.
  • [19] Borchardt, H.J. and F. Daniels, The application of differential thermal analysis to the study of reaction kinetics1. Journal of the American Chemical Society, 1957. 79(1): p. 41-46.
  • [20] Smykatz-Kloss, W., Differential thermal analysis: application and results in mineralogy. Vol. 11. 2012: Springer Science & Business Media.
  • [21] Yersak, T.A., et al., Consolidation of composite cathodes with NCM and sulfide solid-state electrolytes by hot pressing for all-solid-state Li metal batteries. Journal of Solid State Electrochemistry, 2022. 26(3): p. 709-718.
  • [22] Long, D.A., The raman effect. 2002: John Wiley & Sons Ltd.
  • [23] Huang, B., et al., Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. Journal of Power Sources, 2015. 284: p. 206-211.
  • [24] Jung, S.-Y., R. Rajagopal, and K.-S. Ryu, Synthesis and electrochemical performance of (100− x) Li7P3S11-xLi2OHBr composite solid electrolyte for all-solid-state lithium batteries. Journal of Energy Chemistry, 2020. 47: p. 307-316.
  • [25] Xu, R.C., et al., Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochimica Acta, 2016. 219: p. 235-240.
  • [26] Calpa, M., N.C. Rosero-Navarro, A. Miura, and K. Tadanaga, Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. RSC Advances, 2017. 7(73): p. 46499-46504.
  • [27] Eatmon, Y., et al., Air Stabilization of Li7P3S11 Solid-State Electrolytes through Laser-Based Processing. Nanomaterials, 2023. 13(15): p. 2210.
APA Türk Ç, TOKUR M (2023). Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. , 128 - 133. 10.46810/tdfd.1326355
Chicago Türk Çağrı Gökhan,TOKUR MAHMUD Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. (2023): 128 - 133. 10.46810/tdfd.1326355
MLA Türk Çağrı Gökhan,TOKUR MAHMUD Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. , 2023, ss.128 - 133. 10.46810/tdfd.1326355
AMA Türk Ç,TOKUR M Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. . 2023; 128 - 133. 10.46810/tdfd.1326355
Vancouver Türk Ç,TOKUR M Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. . 2023; 128 - 133. 10.46810/tdfd.1326355
IEEE Türk Ç,TOKUR M "Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries." , ss.128 - 133, 2023. 10.46810/tdfd.1326355
ISNAD Türk, Çağrı Gökhan - TOKUR, MAHMUD. "Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries". (2023), 128-133. https://doi.org/10.46810/tdfd.1326355
APA Türk Ç, TOKUR M (2023). Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. Türk Doğa ve Fen Dergisi, 12(3), 128 - 133. 10.46810/tdfd.1326355
Chicago Türk Çağrı Gökhan,TOKUR MAHMUD Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. Türk Doğa ve Fen Dergisi 12, no.3 (2023): 128 - 133. 10.46810/tdfd.1326355
MLA Türk Çağrı Gökhan,TOKUR MAHMUD Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. Türk Doğa ve Fen Dergisi, vol.12, no.3, 2023, ss.128 - 133. 10.46810/tdfd.1326355
AMA Türk Ç,TOKUR M Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. Türk Doğa ve Fen Dergisi. 2023; 12(3): 128 - 133. 10.46810/tdfd.1326355
Vancouver Türk Ç,TOKUR M Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries. Türk Doğa ve Fen Dergisi. 2023; 12(3): 128 - 133. 10.46810/tdfd.1326355
IEEE Türk Ç,TOKUR M "Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries." Türk Doğa ve Fen Dergisi, 12, ss.128 - 133, 2023. 10.46810/tdfd.1326355
ISNAD Türk, Çağrı Gökhan - TOKUR, MAHMUD. "Synthesis of Li7P3S11 Solid Electrolyte for All-Solid-State Lithium-Sulfur Batteries". Türk Doğa ve Fen Dergisi 12/3 (2023), 128-133. https://doi.org/10.46810/tdfd.1326355