Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation

Yıl: 2017 Cilt: 2 Sayı: 1 Sayfa Aralığı: 18 - 27 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation

Öz:
A series of B-doped anatase TiO2 catalysts have been synthesized by solvothermal method and the photocatalytic activity toward a fluoroquinolone antibiotic (ciprofloxacin) has been investigated. The results showed that the boron doping not only reduced the band gap energy, it also improved the photocatalytic activity of TiO2 towards the selected antibiotic under visible light irradiation. The effects of solution pH, catalyst dosage and the presence of process enhancer/inhibitors on the photoactivity were examined. Response surface methodology was successfully utilized to model and optimize the photocatalytic process with high correlation (R2 = 0.9960). The degrees of boron doping and visible light active mechanism have also been studied. Compared with raw TiO2 boron doped catalysts exhibit excellent photostability and photodegradation ability of ciprofloxacin under visible light irradiation.
Anahtar Kelime:

Konular: Maden İşletme ve Cevher Hazırlama Mühendislik, Jeoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Lu Y., Jiang M., Wang C., Wang Y., Yang W., Impact of molecular size on two antibiotics adsorption by porous resins, J. Taiwan Inst. Chem. E., 45, 955–961, 2014.
  • [2] Hassani A., Khataee A., Karaca S., Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling, J. Mol. Catal. A: Chem., 409, 149–161, 2015.
  • [3] Jalali H. M., Carlo M., Kinetic study of antibiotic ciprofloxacin ozonation by MWCNT/MnO2 using Monte Carlo simulation, Mater. Sci. Eng. C, 59, 924–929, 2016.
  • [4] Zhang X., Li R., Jia M., Wang S., Huang Y., Chen C., Degradation of ciprofloxacin in aqueous bismuth oxybromide ( BiOBr ) suspensions under visible light irradiation: A direct hole oxidation pathway, Chem. Eng. J., 274, 290–297, 2015.
  • [5] Tu J., Yang Z., Hu C., Qu J., Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation, J. Env. Sci., 26, 1154–1161, 2014.
  • [6] El-Shafey E. I., Al-Lawati H., Al-Sumri A. S., Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets, J. Env. Sci., 24, 1579–1586, 2012.
  • [7] Batchu S. R., Panditi V. R., ÓShea K. E., Gardinali P. R., Photodegradation of antibiotics under simulated solar radiation: Implications for their environmental fate, Sci. Tot. Env., 470-471, 299–310, 2014.
  • [8] Wang H., Li J., Huo P., Yan Y., Guan Q., Preparation of Ag2 O/Ag2 CO3 /MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation, Appl. Surf. Sci., 366, 1–8, 2016.
  • [9] Wang H., Li J., Ma C., Guan Q., Lu Z., Huo P., Yan Y., Melamine modified P25 with heating method and enhanced the photocatalytic activity on degradation of ciprofloxacin, Appl. Surf. Sci., 329, 17–22, 2015.
  • [10] Haddad T., Kümmerer K., Characterization of phototransformation products of the antibiotic drug Ciprofloxacin with liquid chromatography–tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap, Chemosphere, 115, 40–46, 2014.
  • [11] Shi W., Yan Y., Yan X., Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin, Chem. Eng. J., 215-216, 740–746, 2013.
  • [12] Sturini M., Speltini A., Maraschi F., Pretali L., Profumo A., Fasani E., Albini A. et al., Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts, Water Res., 46, 5575–5582, 2012.
  • [13] Li C., Chen G., Sun J., Rao J., Han Z., Hu Y., Doping effect of phosphate in Bi2 WO6 and universal improved photocatalytic activity for removing various pollutants in water, Appl.Catal. B, 188, 39–47, 2016.
  • [14] Chang C., Fu Y., Hu M., Wang C., Shan G., Zhu L., Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/ mpg-C3 N4 ) under simulated solar light irradiation, Appl. Catal. B, 143, 553–560, 2013.
  • [15] Wang Q., Jiang H., Zang S., Li J., Wang Q., Gd, C, N and P quaternary doped anatase-TiO2 nano-photocatalyst for enhanced photocatalytic degradation of 4-chlorophenol under simulated sunlight irradiation, J. Alloys Compd., 586, 411–419, 2014.
  • [16] Hong Y., Ren A., Jiang Y., He J., Xiao L., Shi W., Sol– gel synthesis of visible-light-driven Ni(1-x)Cu(x)Fe2 O4 photocatalysts for degradation of tetracycline, Ceram. Int., 41, 1477–1486, 2015.
  • [17] Xu D., Liu K., Shi W., Chen M., Luo B., Xiao L., Gu W., Ag-decorated K2 Ta2 O6 nanocomposite photocatalysts with enhanced visible-light-driven degradation activities of tetracycline (TC), Ceram. Int., 41, 4444–4451, 2015.
  • [18] Liang L., Yulin Y., Xinrong L., Ruiqing F., Yan S., Shuo L., Direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB, Appl. Surf. Sci., A, 265, 36–40, 2013.
  • [19] Wu Y., Xing M., Zhang J., Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity, J. Hazard. Mater., 192, 368–373, 2011.
  • [20] Quińones D. H., Rey A., Álvarez P. M., Beltrán F. J., Li Puma G., Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, o-phenylphenol, MCPA and terbuthylazine, Appl. Catal. B, 178, 74–81, 2015.
  • [21] Lan X., Wang L., Zhang B., Tian B., Zhang J., Preparation of lanthanum and boron co-doped TiO2 by modified sol–gel method and study their photocatalytic activity, Catal. Today, 224, 163–170, 2014.
  • [22] Zaleska A., Grabowska E., Sobczak J. W., Gazda M., Hupka J., Photocatalytic activity of boron-modified TiO2 under visible light: The effect of boron content, calcination temperature and TiO2 matrix, Appl. Catal. B, 89, 469–475, 2009.
  • [23] Zheng J., Liu Z., Liu X., Yan X., Li D., Chu W., Facile hydrothermal synthesis and characteristics of B-doped TiO2 hybrid hollow microspheres with higher photo-catalytic activity, J. Alloys Compd., 509, 3771–3776, 2011.
  • [24] Cavalcante R. P., Dantas R. F., Bayarri B., González O., Giménez J., Esplugas S., Junior A. M., Synthesis and characterization of B-doped TiO2 and their performance for the degradation of metoprolol, Catal. Today, 252, 27–34, 2015.
  • [25] Khan R., Woo S., Kim T., Nam C., Comparative study of the photocatalytic performance of boron – iron Codoped and boron-doped TiO2 nanoparticles, Mater. Chem. Phys., 112 (1), 167–172, 2008.
  • [26] Zhao W., Ma W., Chen C., Zhao J., Shuai Z., Efficient degradation of toxic organic pollutants with Ni2 O3 / TiO2- x Bx under visible irradiation, J. Am. Chem. Soc., 126 (15), 4782–4783, 2004.
  • [27] Ṥtengl V., Houŝkova V., Bakardjieva S., Murafa N., Photocatalytic activity of boron-modified titania under UV and visible-light illumination, Appl. Mater. Inter., 2 (2), 575–580, 2010.
  • [28] Uddin N., Islam S., Mazumder M. R., Hossain A., Elias M., Siddiquey I. A., Susan A. B. H., et al., Photocatalytic and antibacterial activity of B/N/Ag co-doped CNT–TiO2 composite films, J. Incl. Phenom. Macrocycl. Chem., 82, 229–234, 2015.
  • [29] Wang B., Leung M. K. H., Lu X. Y., Chen S. Y., Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets, Appl. Energy, 112, 1190–1197, 2013.
  • [30] Paul T., Miller P., Strathmann T., Visible-Light-Mediated TiO2 Photocatalysis of Fluoroquinolone Antibacterial Agents, Environ. Sci. Technol., 41, 4720-4727, 2007.
  • [31] Dobrosz-Gómez I., Gómez-García M. A., López Zamora S. M., GilPavas E., Bojarska J., Kozanecki M., Rynkowski J. M., Transition metal loaded TiO2 for phenol photo-degradation, C. R. Chimie, 18, 1170–1182, 2015.
  • [32] Mao X., Fan C., Wang Y., Wang Y., Zhang X., RhBsensitized effect on the enhancement of photocatalytic activity of BiOCl toward bisphenol-A under visible light irradiation, Appl. Surf. Sci., 317, 517–525, 2014.
  • [33] Vaiano V., Iervolino G., Sannino D., Rizzo L., Sarno G., Farina A., Enhanced photocatalytic oxidation of arsenite to arsenate in water solutions by a new catalyst based on MoOx supported on TiO2 , Appl. Catal. B, 160- 161, 247–253, 2014.
  • [34] Razuc M., Garrido M., Caro Y. S., Teglia C. M., Goicoechea H. C., Fernández B. S., Hybrid hard- and softmodeling of spectrophotometric data for monitoring of ciprofloxacin and its main photodegradation products at different pH values, Spectrochim. Acta Part A, 106, 146–154, 2013.
  • [35] Rong X., Qiu F., Rong J., Zhu X., Yan J., Yang D., Enhanced visible light photocatalytic activity of W-doped porous, Mater. Lett., 164, 127–131, 2016.
  • [36] Hou D., Goei R., Wang X., Wang P., Lim T., Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation, Appl. Catal. B, 126, 121–133, 2012.
  • [37] Salarian A. A., Hami Z., Mirzaei N., Mohseni S. M., Asadi A., Bahrami H., Vosoughi M., et al., N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology, J. Mol. Liq., 220, 183–191, 2016.
APA BİLGİN ŞİMŞEK E (2017). Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. , 18 - 27.
Chicago BİLGİN ŞİMŞEK ESRA Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. (2017): 18 - 27.
MLA BİLGİN ŞİMŞEK ESRA Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. , 2017, ss.18 - 27.
AMA BİLGİN ŞİMŞEK E Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. . 2017; 18 - 27.
Vancouver BİLGİN ŞİMŞEK E Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. . 2017; 18 - 27.
IEEE BİLGİN ŞİMŞEK E "Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation." , ss.18 - 27, 2017.
ISNAD BİLGİN ŞİMŞEK, ESRA. "Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation". (2017), 18-27.
APA BİLGİN ŞİMŞEK E (2017). Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. BOR DERGİSİ, 2(1), 18 - 27.
Chicago BİLGİN ŞİMŞEK ESRA Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. BOR DERGİSİ 2, no.1 (2017): 18 - 27.
MLA BİLGİN ŞİMŞEK ESRA Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. BOR DERGİSİ, vol.2, no.1, 2017, ss.18 - 27.
AMA BİLGİN ŞİMŞEK E Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. BOR DERGİSİ. 2017; 2(1): 18 - 27.
Vancouver BİLGİN ŞİMŞEK E Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation. BOR DERGİSİ. 2017; 2(1): 18 - 27.
IEEE BİLGİN ŞİMŞEK E "Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation." BOR DERGİSİ, 2, ss.18 - 27, 2017.
ISNAD BİLGİN ŞİMŞEK, ESRA. "Doping of boron in TiO2 catalyst: Enhanced photocatalytic degradation of antibiotic under visible light irradiation". BOR DERGİSİ 2/1 (2017), 18-27.