Yıl: 2019 Cilt: 7 Sayı: 9 Sayfa Aralığı: 1268 - 1274 Metin Dili: Türkçe DOI: 10.24925/turjaf.v7i9.1268-1274.2170 İndeks Tarihi: 01-09-2020

Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü

Öz:
Probiyotikler, yeterli miktarlarda tüketildiğinde yararlı etkiler sağlayan canlı mikroorganizmalarolarak tanımlanmaktadır. Günümüzde genel olarak mevcut olan probiyotikler, Lactobacillus,Bifidobacterium ve Bacillus gibi bakterilerdir. Son yıllarda mayalar, yeni probiyotikleringeliştirilmesi için büyük potansiyeller sunmaktadır. Saccharomyces cerevisiae var. boulardii,bugüne kadar probiyotik olarak tanınan ve karakterize edilen tek mayadır. Bu durum diğer mayatürlerinin de probiyotik özelliklere sahip olup olmadığı sorusunu gündeme getirmektedir. Sonaraştırmalar, probiyotik kanıtlara sahip türlerin bazılarının S. cerevisiae dışında Kluyveromycesmarxianus ve Pichia kudriavzeii olduğunu göstermektedir. Gıdalardaki mayalar tarafından üretilençoğu enzim, gıdalardaki kompleks bileşiklerin metabolize edilmesinde yer alır, böylece fermentegıdaların besin değerini ve organoleptik özelliklerini oluşturur. EFSA, QPS statüsünü yani “gıdakatkı maddesi” statüsünü, sadece birkaç mayaya vermiştir. İlginç özelliklerinin doğrulanması içinmayaların probiyotik olarak çalışılmasına daha detaylı bakılması gerekmektedir.
Anahtar Kelime:

Probiotic Yeasts and the Role of Yeasts in Probiotic Foods

Öz:
Probiotics are defined as live microorganisms that provide beneficial effects when consumed in sufficient quantities. Currently available probiotics are bacteria such as Lactobacillus, Bifidobacterium and Bacillus. In recent years, yeast has presented great potential for the development of new probiotics. Saccharomyces cerevisiae var. boulardii is the only yeast that has been recognized and characterized as probiotic until today. This raises the question of whether other yeast species have probiotic properties. Recent investigations show that some species with probiotic evidence are Kluyveromyces marxianus and Pichia kudriavzeii, except S. cerevisiae. Most of the enzymes produced by the preserved yeast are involved in the metabolism of complex compounds in foods, thus forming the nutritional value and organoleptic properties of fermented foods. EFSA has given the QPS statue, the "food additive," only a few yeasts. In order to verify interesting properties, probiotic working of yeasts needs to be examined in more detail.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abbas CA, 2006. Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In The Yeast Handbook: Yeasts in Food and Beverages ed. Querol, A. and Fleet, G.H. Berlin Heidelberg: Springer- Verlag. ss: 285–334.
  • Akabanda F, Owusu-Kwarteng J, Tano-Debrah K, Glover RLK, Nielsen DS, Jespersen L, 2013. Taxonomic and molecular characterization of lactic acid bacteria and yeasts in Nunu, a Ghanaian fermented milk product. Food Microbiol., 34: 277– 283. DOI: https://doi.org/10.1016/j.fm.2012.09.025.
  • Amorim JC, Piccoli RH, Duarte WF. 2018. Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Food Res Int., 107: 518-527. DOI: https://doi.org/10.1016/j.foodres. 2018.02.054.
  • Annan NT, Poll L, Sefa DS, Plahar WA, Jakobsen M. 2003. Influence of starter culture combinations of Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei on aroma in Ghanaian maize dough fermentation. Eur J Food Res Technol., 216: 377–384. DOI: DOI: https://doi.org/10.1007/s00217-003-0692-5.
  • Appleby NR, Walters RFJ. 2014. The role of bile acids in functional GI disorders. Journal of Neurogastroenterology and Motility, 26: 1057–1069. DOI: https://doi.org/10.1111/ nmo.12370.
  • Banwo K, Sanni A, Tan H. 2013. Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. J Appl Microbiol., 114: 229–241. DOI: https://doi.org/10.1111/jam.12031.
  • Bianchi F, Rossi EA, Gomes RG, Sivieri K. 2015. Potentially synbiotic fermented beverage with aqueous extracts of quinoa (Chenopodium quinoa Willd) and soy. Food Sci. Technol. Int., 21(6): 403–415. DOI: http://dx.doi.org/10. 1177/1082013214540672.
  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. 2003. Cereal-based fermented foods and beverages. Food Res Int., 36: 527–543. DOI: https://doi.org/10.1016/S0963- 9969(03)00009-7.
  • Camargo Prado F, De Dea Lindner J, Inaba J, Thomaz-Soccol V, Kaur Brar S, Soccol CR. 2015. Development and evaluation of a fermented coconut water beverage with potential health benefits. J. Funct. Foods., 12: 489–497. DOI: http://dx.doi.org/10.1016/j.jff.2014.12.020.
  • Chen LS, Ma Y, Maubois JL, He SH, Chen LJ, Li HM. 2010. Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Sci Technol., 90: 537– 548. DOI: http://dx.doi.org/10.1051/dst/2010001.
  • Chi ZM, Liu G, Zhao S. 2010 Marine yeasts as biocontrol agents and producers of bio-products. Appl Microbiol Biotechnol., 86:1227–1241. DOI: http://dx.doi.org/10.1007/s00253-010- 2483-9.
  • Collado MC, Meriluoto J, Salminen S. 2007. Measurement of aggregation properties between probiotics and pathogens: invitro evaluation of different methods. J Microbiol Methods., 71: 71–74. DOI: https://doi.org/10.1016/j.mimet.2007.07.005.
  • Collado MC, Meriluoto J, Salminen S. 2008. Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol., 226: 1065–1073. DOI: http://dx.doi.org/10.1007/s00217-007-0632-x.
  • Czerucka, D, Rampal, P. 2002. Experimental effects of Saccharomyces boulardii on diarrheal pathogens. Microbes and Infection, 4(7): 733–739. DOI: http://dx.doi.org/10.1016/S1286-4579(02)01592-7.
  • Czerucka D, Piche T, Rampal P. 2007. Review article: yeast as probiotics – Saccharomyces boulardii. Aliment Pharmacol Ther., 26: 767–778. DOI: https://doi.org/10.1111/j.1365- 2036.2007.03442.x.
  • Diosma G, Romanin DE, Rey-Burusco MF. 2014. Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J Microbiol Biotechnol., 30: 43–53. DOI: http://dx.doi.org/10.1007/s11274-013-1419-9
  • Duary RK, Rajput YS, Batish VK, Grover S. 2011. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J Med Res., 134: 664– 671. DOI: http://dx.doi.org/10.4103/0971-5916.90992
  • ElMekawy A, Hegab HM, El-Baz A, Hudson SM. 2014. Fabrication and characterization of fungal chitosan-SAP membranes for hemostatic application. Curr Biochem Eng., 1:75–82. DOI: http://dx.doi.org/10.3390/ijms17122076.
  • Etchepare MDA, Barin JS, Cichoski AJ, Jacob-Lopes E, Wagner R, Fries LLM, CR de Menezes. 2015. Microencapsulation of probiotics using sodium alginate. Cienc. Rural. 45: 1319– 1326. DOI: http://dx.doi.org/10.1590/0103-8478cr20140938.
  • FAO & WHO 2002. Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization/World Health Organization (April), 1–11. http://www.fao.org/es/ESN/Probio/probio.htm.
  • Forssten SD, Sindelar CW, Ouwehand AC. 2011. Probiotics from an industrial perspective. Anaerobe, 17(6): 410–413. DOI: http://dx.doi.org/10.1016/j.anaerobe.2011. 04.014.
  • Freire AL, Ramos CL, Schwan RF. 2017. Effect of symbiotic interaction between a fructooligosaccharide and probiotic on the kinetic fermentation and chemical profile of maize blended rice beverages. Food Res. Int., 100: 698–707. DOI: http://dx.doi.org/10.1016/j.foodres.2017.07.070. PMID: 27973408.
  • Garcıa-Hernandez Y, Rodrıguez Z, Brandao LR, Rosa CA, Nicoli JR, Iglesias AE, Perez-Sanchez T, Salabarrıa RB. 2012. Identification and in-vitro screening of avian yeasts for use as probiotic. Res Vet Sci., 93: 798–802. DOI: https://doi.org/10.1016/j.rvsc.2011.09.005.
  • Gbassi GK, Vandamme T. 2012. Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharm J., 4: 149–163. DOI: https://doi.org/10.3390 /pharmaceutics4010149.
  • Gientka I, Bzducha-Wróbel A, Stasiak-Różańska L, Bednarska AA, Błażejak S. 2016. The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources. Electron J Biotechnol., 22: 31-37. DOI: https://doi.org/10.1016 /j.ejbt.2016.02.008.
  • Gil-Rodriguez AM, Carrascosa AV, Requena T. 2015. Yeasts in foods and beverages: In vitro characterisation of probiotic traits. LWT-Food Science and Technology, 64: 1156–1162. DOI: https://doi.org/10.1016/j.lwt.2015.07.042.
  • Gotcheva V, Hristozova E, Hristozova T, Guo M, Roshkova Z, Angelov A. 2002. Assessment of potential probiotic properties of lactic acid bacteria and yeast strains. Food Biotechnol., 16: 211–225. DOI: https://doi.org/10.1081/FBT120016668.
  • Hatoum R, Labrie S, Fliss I. 2012. Antimicrobial and probiotic properties of yeasts: From fundamental to novel applications. Front Microbiol., 1–12. DOI: http://dx.doi.org/10.3389 /fmicb.2012.00421.
  • Hellstrom AM, Almgren A, Carlsson NG, Svanberg U, Andlid TA. 2012. Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa. Int J Food Microbiol., 153: 73–77. DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.10.018.
  • Hirimuthugoda NY, Chi Z, Wu L. 2007. Probiotic yeasts with phytase activity identified from the gastrointestinal tract of sea cucumbers. SPC Beche de Mer Information Bulletin. 26: 31-34.
  • Jankovic T, Frece J, Abram M, Gobin I. 2012. Aggregation ability of potential probiotic Lactobacillus plantarum strains. Int J Sanit Eng Res., 6: 1–9.
  • Jankovic I, Sybesma W, Phothirat P, Ananta E, Mercenier A. 2010. Application of probiotics in food products—challenges and new approaches. Current Opinion on Biotechnology, 21: 175–181. DOI: https://doi.org/10.1016/j.copbio.2010.03.009.
  • Jespersen L. 2003. Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res., 3: 191–200. DOI: https://doi.org/10.1016/S1567- 1356(02)00185-X.
  • Kantachote D, Ratanaburee A, Hayisamaae W, Sukhoom A, Nunkaew T. 2017. The use of potential probiotic Lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J Funct Foods., 32: 401–408. DOI: http://dx.doi.org/10.1016/j.jff.2017.03.018.
  • Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, Fakiri EM. 2013. Health benefits of probiotics: a review. 1–7. DOI: http://dx.doi.org/10.5402/2013/481651.
  • Kimoto H, Ohmomo S, Okamoto T. 2002. Cholesterol removal from media by Lactococci. J Dairy Sci., 85: 3182– 3188. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74406-8.
  • Kourelis A, Kotzamanidis C, Litopoulou-Tzanetakis E, Scourasi ZG, Tzanetakis N, Yiangou M. 2010. Preliminary probiotic selection of dairy and human yeast strains. J Biol Res., 13: 93–104.
  • Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B. 2012. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diabetes Res Article., ID 902917 2012, 1–14. DOI: http://dx.doi.org/10.1155/2012/902917.
  • Kumari S, Panesar PS, Penesar R. 2011. Production of βGalactosidase using novel yeast isolate from whey. Int J Dairy Sci., 6 (2): 150-157.
  • Kumura H, Tanoue Y, Tsukahara M. 2004. Screening of dairy yeast strains for probiotic applications. J Dairy Sci., 87:4050–4056. DOI: http://dx.doi.org/10.3168/jds.S0022-0302(04)73546-8.
  • Mahdhi A, Hmila Z, Behi A, Bakhrouf A. 2011. Preliminary characterization of the probiotic Properties of Candida famata and Geobacillus thermoleovorans. Iran J of Microbiol., 3 (3): 129-134. PMID: 22347595.
  • Merk K, Borelli C, Korting HC. 2005. Lactobacilli–bacteria-host interactions with special regard to the urogenital tract. Int J Med Microbiol., 295: 9–18. DOİ: https://doi.org/10.1016 /j.ijmm.2004.11.006.
  • Mishra K, Ojha H, Chaudhury NK. 2012. Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem., 130: 1036–1043. DOI: https://doi.org/10.1016/j.foodchem.2011.07.127.
  • Moslehi-Jenabian S, Pedersen LL, Jespersen L. 2010. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients, 2(4): 449–473. DOI: http://dx. doi.org/103390/nu2040449.
  • Nayak SK. 2011. Biology of eukaryotic probiotics. Probiotics, microbiology monographs 21. In Probiotic Biology, Genetics and Health Aspects. Liong MT. Berlin, Heidelberg: SpringerVerlag. ss: 29–55.
  • Obradovic NS, Krunic TC, Trifkovic KT, Bulatovic ML, Rakin MP, Bugarski BM. 2015. Influence of chitosan coating on mechanical stability of biopolymer carriers with probiotic starter culture in fermented whey beverages. Int J Polym Sci., 5: 1–8. DOI: http://dx.doi.org/10.1155/2015/732858.
  • Ogunremi OR, Agrawal R, Sanni AI. 2015. Development of cereal-based functional food using cereal-mix substrate fermented with probiotic strain - Pichia kudriavzevii OG32. Food Science & Nutrition, 3(6): 486–494. DOI: http://dx.doi.org/10.1002/ fsn3.239.
  • Ogunremi OR, Sanni AI, Agrawal R. 2015. Probiotic potentials of yeasts isolated from some cereal‐based N igerian traditional fermented food products. J. Appl. Microbiol., 119(3): 797-808. DOI: https://doi.org/10.1111/jam.12875.
  • Ogunremi OR, Sanni AI. 2011. Occurrence of amylolytic and/or bacteriocing-producing lactic acid bacteria in ogi and fufu. Annu Food Sci Technol., 12: 71–77.
  • Pedersen LL, Owusu-Kwarteng J, Thorsen L, Jespersen L. 2012. Biodiversity and probiotic potential of yeasts isolated from Fura, a west African spontaneously fermented cereal. Int. J. Food Microbiol., 159(2): 144–151. DOI: http://dx. doi.org/10.1016/j.ijfoodmicro.2012.08.016.
  • Perricone M, Bevilacqua A, Corbo MR, Sinigaglia M. 2014. Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiol., 38: 26–35. DOI: https://doi.org/10.1016/j.fm.2013.08.006.
  • Plessas S, Bosnea L, Alexopoulos A, Bezirtzoglou E. 2012. Potential effects of probiotics in cheese and yoğurt production: a review. Eng Life Sci., 12: 1–9. DOI: https://doi.org/10.1002/elsc.201100122.
  • Psani M, Kotzekidou P. 2006. Technological characteristics of yeast strains and their potential as starter adjuncts in Greekstyle black olive fermentation. World J Microbiol Biotechnol., 22: 1329–1336.
  • Psomas E, Andrighetto C, Litopoulou-Tzanetaki, E, Lombardi A, Tzanetakis N. 2001. Some probiotic properties of yeast isolates from infant faeces and Feta cheese. Int J Food Microbiol., 69: 125–133. DOI: https://doi.org/10.1016 /S0168-1605(01)00580-3.
  • Psomas EI, Fletouris DJ, Litopoulou-Tzanetaki E, Tzanetakis N. 2003. Assimilation of cholesterol by yeast strains isolated from infant feces and Feta cheese. J Dairy Sci., 86: 3416– 3422. DOI: https://doi.org/10.3168/jds.S0022-0302(03) 73945-9.
  • Rajakala P, Selvi PK. 2006. The effect of pH, temperature and alkali metal ions on the hydrolsis of whey lactose catalysed by β-Galactosidase from Kluyveromyces marxianus. Int J Dairy Sci., 1: 167-172.
  • Rajkowska K, Kunicka-Styczynska A. 2010. Probiotic properties of yeast isolated from chicken feces and kefirs. Pol J Microbiol., 29: 257–263.
  • Ranadheera C, Vidanarachchi J, Rocha R, Cruz A, Ajlouni S. 2017. Probiotic delivery through fermentation: Dairy vs. nondairy beverages. Fermentation, 3(4): 67. DOI: http://dx.doi.org/10.3390/fermentation3040067.
  • Romanin DE, Llopis S, Genovés S, Martorell P, Ramón VD, Garrote GL, Rumbo M. 2015. Probiotic yeast Kluyveromyces marxianus CIDCA 8154 shows anti-inflammatory and antioxidative stress properties in in vivo models. Benef Microbes., 7 (1): 83-93. DOI: https://doi.org/10.3920 /BM2015.0066.
  • Romanin D, Serradell M, González Maciel D, Lausada N, Garrote GL, Rumbo M. 2010. Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. Int. J. Food Microbiol., 140: 102–108. DOI: https://doi.org/10.1016 /j.ijfoodmicro.2010.04.014.
  • Russo P, Arena MP, Fiocco D, Capozzi V, Drider D, Spano G. 2017. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol., 247: 48–54. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2016.04.027.
  • Sanni A, Franz C, Schillinger U, Huch M, Guigas C. Holzapfel W. 2013. Characterization and technological properties of lactic acid bacteria in the production of “Sorghurt”, a cerealbased product. Food Biotechnol., 27:178–198. DOI: https://doi.org/10.1080/08905436.2013.781949.
  • Saxelin M. 2008. Probiotic formulations and applications, the current probiotic market, and changes in the marketplace: A european perspective. Clinical Infectious Diseases, 46: 76– 79. DOI: https://doi.org/10.1086/523337.
  • Sazawal S, Hiremath G, Dhingra U. 2006. Efficacy of probiotics in prevention of acute diarrhoea: A meta-analysis of masked, randomized, placebo-controlled trials. Lancet Infectious Diseases, 6, 374–382. DOI: https://doi.org/10.1016/S1473- 3099(06)70495-9.
  • Smith IM, Baker A, Arneborg N, Jespersen L. 2015. NonSaccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Lett Appl Microbiol. 61: 491-497. DOI: https://doi.org/10.1111/lam.12481.
  • Syal P, Vohra A. 2013. Probiotic potential of yeasts isolated from traditional Indian fermented foods. Int J Microbiol Res., 5 (2): 390-398.
  • Trotta F, Caldini G, Dominici L, Federici E, Tofalo R, Schirone M, Corsetti A, Suzzi G. 2012. Food borne yeasts as DNAbioprotective agents against model genotoxins. Int J Food Microbiol., 153: 275–280. DOI: https://doi.org/10.1016 /j.ijfoodmicro.2011.11.009.
  • Van der Aa Kühle, A., Skovgaard, K., & Jespersen, L. (2005). In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. International journal of food microbiology, 101(1): 29–39. http://dx. doi.org/10.1016/j.ijfoodmicro. 2004.10.039.
  • Vasdinyei R, Deák T. 2003. Characterization of yeast isolates originating from Hungarian dairy products using traditional and molecular identification techniques. Int J Food Microbiol., 86:123–130. DOI: http://dx. doi.org/10.1016 /S0168-1605(03)00251-4
  • Vohra A, Satyanarayana T. 2003. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol., 23 (1): 29-60. DOI: https://doi.org/10.1080/713609297.
  • Walker GM. 2009. Fungi: yeasts. In Encyclopedia of Microbiology. Schaechter M. 3. Baskı. Oxford, UK: Elsevier Inc. ss: 478–491.
  • Wassenaar TM, Klein G. 2008. Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. J. Food Prot., 7: 1734–1741. DOI: https://doi.org/10.4315/0362-028X-71.8.1734.
  • Xie N, Zhou T, Li B. 2012. Kefir yeasts enhance probiotic potentials of Lactobacillus paracasei H9: the positive effects of coaggregation between the two strains. Food Res Int., 45: 394– 401. DOI: https://doi.org/10.1016/j.foodres.2011.10.045.
APA kılıç kanak e, öztürk yılmaz s (2019). Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. , 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
Chicago kılıç kanak eda,öztürk yılmaz suzan Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. (2019): 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
MLA kılıç kanak eda,öztürk yılmaz suzan Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. , 2019, ss.1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
AMA kılıç kanak e,öztürk yılmaz s Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. . 2019; 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
Vancouver kılıç kanak e,öztürk yılmaz s Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. . 2019; 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
IEEE kılıç kanak e,öztürk yılmaz s "Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü." , ss.1268 - 1274, 2019. 10.24925/turjaf.v7i9.1268-1274.2170
ISNAD kılıç kanak, eda - öztürk yılmaz, suzan. "Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü". (2019), 1268-1274. https://doi.org/10.24925/turjaf.v7i9.1268-1274.2170
APA kılıç kanak e, öztürk yılmaz s (2019). Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 7(9), 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
Chicago kılıç kanak eda,öztürk yılmaz suzan Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 7, no.9 (2019): 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
MLA kılıç kanak eda,öztürk yılmaz suzan Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.7, no.9, 2019, ss.1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
AMA kılıç kanak e,öztürk yılmaz s Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2019; 7(9): 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
Vancouver kılıç kanak e,öztürk yılmaz s Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2019; 7(9): 1268 - 1274. 10.24925/turjaf.v7i9.1268-1274.2170
IEEE kılıç kanak e,öztürk yılmaz s "Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 7, ss.1268 - 1274, 2019. 10.24925/turjaf.v7i9.1268-1274.2170
ISNAD kılıç kanak, eda - öztürk yılmaz, suzan. "Probiyotik Mayalar ve Probiyotik Gıdalarda Mayaların Rolü". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 7/9 (2019), 1268-1274. https://doi.org/10.24925/turjaf.v7i9.1268-1274.2170