Yıl: 2020 Cilt: 13 Sayı: 2 Sayfa Aralığı: 65 - 78 Metin Dili: İngilizce İndeks Tarihi: 17-12-2020

Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters

Öz:
In this study, two new phthalocyanines (M = Zn and Co) were synthesized using the (E)-4-(4-(3-(4-(benzyloxy)phenyl)acryloyl)phenoxy)phthalonitrile (3) as ligand prepared from the chemical reaction of 4-nitrophthalonitrile with (E)-3-(4-(benzyloxy)phenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (2). All compoundswere characterized using by 1H-NMR, 13C-NMR, UV–Vis, FT-IR, and MALDI-TOF mass spectra. Singletoxygen quantum yields of the synthesized compounds, aggregates in different solutions, metal chelating and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging properties were reported.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Claessens, C. G.; Hahn, U.; Torres, T. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Record, 2008, 8, 75-97.
  • [2] Çakır, D.; Arslan, T.; Bıyıklıoğlu, Z. Effect of substituent position and metal type on the electropolymerization properties of chalcone substituted metallophthalocyanines. Dalton Transaction. 2015, 44(48), 20859-20866.
  • [3] Saka, E. T.; Çelik, G.; Sarkı, G.; Kantekin, H. Symmetrical and difunctional substituted cobalt phthalocyanines with benzoic acids fragments: Synthesis and catalytic activity J. Incl. Phenom. Macrocycl. Chem. 2016, 85, 161-168.
  • [4] Stavric, B. Role of chemopreventers in human diet Clin. Biochem. 1994, 27(5), 319-332.
  • [5] Lu, J.; Wang, C. Medicinal components and pharmacological effects of Rosa rugosa.Rec.Nat.Prod. 1994, 12, 535-543.
  • [6] Çarıkçı, S.; Kılıç, T.; Özer, Z.; Dirmenci, T.; Arabaci, T.; Gören, A.C. Quantitative determination of some phenolics in Origanum laevigatum Boiss. extracts via validated LC-MS/MS method and antioxidant activity. J.Chem.Metrol. 2018, 12, 121-127.
  • [7] Miller, J. D.; Baron, E. D.; Scull, H:; Hsia, A,; Berlin, J. C.; McCormick, T,; Colussi, V.; Kenney, M. E.; Cooper, K. D.; Oleinick. N. L. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: The case experience with preclinical mechanistic and early clinical–translational studies. Toxicol. Appl. Pharmacol. 2007, 224(3), 290–299.
  • [8] Bacellar, I. O. L.;Tsubone, T. M.; Pavani, C.; Baptista, M. S. Photodynamic efficiency: From molecular photochemistry to cell death. Int. J. Mol. Sci. 2015, 16(9), 20523–20559.
  • [9] Dougherty, T. J.;Charles J. G.; Henderson B. W.; Jori, Giulio.; D, Kessel.; Korbelik, M.; Moan J.; Qian, P. Photodynamic therapy. J. Nat. Cancer Inst. 1998, 90(12), 889–905.
  • [10] O’Connor, A. E.; Gallagher, W. M.; Byrne, A. T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 2009, 85, 1053–1074.
  • [11] Manashi, B.; Milnes, M.; Williams, C.; Balmoori, J.; Ye, X.; Stohsand, S.; Bagchi, D. Acute and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective ability of a novel grape seed proanthocyanidin extract. Nutr. Res. 1999, 19(8), 1189–1199.
  • [12] Yıldız, S. Z.; Küçükislamoglu, M.; Tuna, M. Synthesis and characterization of novel flavonoidsubstituted phthalocyanines using (±)naringenin. J. Organomet. Chem. 2009, 694, 4152–4161.
  • [13] Acar, I.; Arslan, T.; Topçu, S.; Serkan, A. A.; Şen, S.; Serencam, H. Synthesis and electrochemistry of metallophthalocyanines bearing {4-[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]phenoxy} groups. J. Organomet. Chem. 2014, 752, 25-29.
  • [14] Formica, J. V.; Regelson, W. F. Review of the biology of quercetin and related bioflavonoids. Chem Toxicol. 1995, 33(12), 1061-1080.
  • [15] Alberto, M. E.; De Simone, B. C.; Mazzone, G.; Sicilia, E. Heavy atom effect on Zn(II) phthalocyanines derivatives: a theoretical exploration of the photophysical properties. Phys. Chem.Phys. 2015, 17, 23595.
  • [16] Dumoulin, F.; Durmus, M.; Ahsen, V.; Nyokong, T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord. Chem. Rev. 2010, 254, 2792–2847.
  • [17] Mori, GD.; Fu. Z.; Viola, E.; Cai, X.; Ercolani, C.; Donzello, M.P.; Kadish, K. M. Tetra-2,3- pyrazinoporphyrazines with externally appended thienyl rings: Synthesis, UV-visible spectra, electrochemical behavior, and photoactivity for the generation of singlet oxygen. Inorg. Chem. 2011, 50, 8225–8237.
  • [18] Cong, F.; Wei, Z.; Huang, Z.; Yu. F.; Liu, H.; Cui, J.; Yu, H.; Chu, X.; Du, X.; Xing, K.; Lai, Characteristic absorption band split of symmetrically tetra-octyloxy metal phthalocyanines. J. Dyes Pigment. 2015, 120, 1–7.
  • [19] Fandakli, S.; Doğan, S.; Sellitepe, H.E.;, Yaşar, A.;, Yaylı N. Synthesis, theoretical calculation and αglucosidase inhibition of new chalcone oximes. Org.Commun. 2018, 215, 23–34.
  • [20] Ivanova, Y.; Gerova, M.; Petrov, O. SOCl2/EtOH: Catalytic system for synthesis of chalcones. Catal. Commun. 2008, 9, 315–316.
  • [21] Kantar, G. K.; Faiz, Ö.; Sahin, O.; Sasmaz, S. Phthalocyanine and azaphthalocyanines containing eugenol: synthesis, DNA interaction and comparison of lipase inhibition properties. J. Chem. Sciences 2017, 129, 1247-1256.
  • [22] Li, M.; Pare, P.W.; Zhang, J.; Kang, T.; Zhang, Z.; Yang, D.; Wang, K.; Xing, H. Antioxidant capacity connection with phenolic and flavonoid content in Chinese medicinal herbs. Rec. Nat. Prod. 2018, 12, 239–250.
  • [23] Halfon, B.; Çetin, Ö.; Kökdil, G.; Topçu, G.Chemical investigation and bioactivity screening of Salvia cassia extracts. Rec. Nat. Prod. 2019, 13, 156–166.
  • [24] Baran, A.; Çol, S.; Karakılıç, E.; Özen, F. Photophysical, photochemical and DNA binding studies of prepared phthalocyanines. Polyhedron 2020, 175, 114205.
  • [25] Pavithra, K.; Vadivukkarasi, S. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn.Food Sci. Human Wellnes. 2015, 4 (1), 42–46.
  • [26] Kauthale, S.; Tekale, S.; Damal, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett. 2017, 27(16), 3891–3896.
  • [27] Zhou, D.Y.; Sun, Y. X.; Shahidi, F. Preparation and antioxidant activity of tyrosol and hydroxytyrosol esters. J. Funct. Foods 2017, 37, 66–73.
  • [28] Carter, P. Spectrophotometric determination of serum Iron at the submicrogram level with a new reagent (Ferrozine). Anal. Biochem. 1971, 40 (2), 450–458.
  • [29] Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature 1958, 181, 1199–1200.
  • [30] Chamarthi, N.R.; Ponne, V.C.; Pulluru, H.B.; Balija, J.D.; Gutala, S.R.; Kallimakula, S.V.; Chintha, V.; Wudayagiri, R..New symmetrical acyclic and alicyclic bisurea derivatives of 4,4'- methylenebis(phenyl isocyanate): Synthesis, characterization, bioactivity and antioxidant activity evaluation and molecular docking studies. Org.Commun. 2018, 11, 80-97.
  • [31] Brannon, J.H. Picosecond laser photophysics. Group 3A phthalocyanines. J. Am. Chem. Soc. 1980, 102, 62-65.
  • [32] Seotsanyana, M. I.; Kuznetsova, N.; Nyokong, T. Photochemical studies of tetra-2,3- pyridinoporphyrazines. J. Photochem. Photobiol. A Chem. 2001, 140, 215-222.
  • [33] Spiller, W.; Kliesch, H.; Worhle, D.; Hackbarth, S.; Roder, B.; Schnurpfeil, G. Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J. Porphyr. Phthal. 1982, 145–158.
  • [35] Bayrak, R.; Akçay, H.T.; Pişkin, M.; Durmuş, M.; Değirmencioğlu, I. Azine-bridged binuclear metallophthalocyanines functioning photophysical and photochemical-responsive. Dyes Pigment. 2012, 95, 330–337.
  • [36] Nyokong, T. Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord. Chem. Rev. 2007, 251, 1707–1722.
  • [37] Ogunsipe, A.; Nyokong, T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media J. Photochem. Photobiol. A Chem. 2005, 173, 211– 220.
  • [38] Darwent, J. R.; Douglas, P.; Harriman, A.; Porter, G.; Richoux, M. Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord. Chem. Rev. 1982, 44, 83-126.
  • [39] Zagal, J. H.; Gulppi, M, A.; Cardenas-Jiron, G. Metal-centered redox chemistry of substituted cobalt phthalocyanines adsorbed on graphite and correlations with MO calculations and Hammett parameters. Electrocatalytic reduction of a disulfide. Polyhedron 2000, 19, 2255-2260.
  • [40] Somakala, K.; Amir, M.; Sharma, V.; Wakode, S. Synthesis and pharmacological evaluation of pyrazole derivatives containing sulfonamide moiety. Monatsh. Chem. 2016, 147, 2017–2029.
  • [41] Shinohara, H.; Tsaryova, O.; Schnurpfeil, G.; Wöhrle, D. Differently substituted phthalocyanines: Comparison of calculated energy levels, singlet oxygen quantum yields, photo-oxidative stabilities, photocatalytic and catalytic activities differently substituted phthalocyanines: Comparison of calculated energy levels, singlet oxygen quantum yields, photo-oxidative stabilities, photocatalytic and catalytic activities. J. Photochem. Photobiol. A Chem. 2006, 184, 50–57.
  • [42] Ozcesmeci, M.; Ozcesmeci, I.; Hamuryudan, E. Synthesis and characterization of new polyfluorinated dendrimeric phthalocyanines. Polyhedron 2010, 29, 2710–2715.
  • [43] Hamuryudan, E.. Synthesis and solution properties of phthalocyanines substituted with four crown ethers. Dyes Pigment. 2006, 2-3, 151-157.
  • [44] Durmus, M.; Nyokong, T.; Synthesis and solution properties of phthalocyanines substituted with four crown ethers. Polyhedron 2007, 26, 2767-2776.
  • [45] Engelkamp, H.; Nolte, R. J. M. J. Doctoral thesis. Porphyrins Phthal. 2000, 4, 454.
  • [46] Kobak, R. Z. U.; Gul, A. Synthesis and solution studies on azaphthalocyanines with quaternary aminoethyl substituents. Color Technol. 2009, 125, 22-28.
APA Baran a, Karakılıç E, Faiz Ö, ÖZEN F (2020). Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. , 65 - 78.
Chicago Baran arif,Karakılıç Emel,Faiz Özlem,ÖZEN Furkan Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. (2020): 65 - 78.
MLA Baran arif,Karakılıç Emel,Faiz Özlem,ÖZEN Furkan Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. , 2020, ss.65 - 78.
AMA Baran a,Karakılıç E,Faiz Ö,ÖZEN F Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. . 2020; 65 - 78.
Vancouver Baran a,Karakılıç E,Faiz Ö,ÖZEN F Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. . 2020; 65 - 78.
IEEE Baran a,Karakılıç E,Faiz Ö,ÖZEN F "Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters." , ss.65 - 78, 2020.
ISNAD Baran, arif vd. "Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters". (2020), 65-78.
APA Baran a, Karakılıç E, Faiz Ö, ÖZEN F (2020). Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. Organic Communications, 13(2), 65 - 78.
Chicago Baran arif,Karakılıç Emel,Faiz Özlem,ÖZEN Furkan Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. Organic Communications 13, no.2 (2020): 65 - 78.
MLA Baran arif,Karakılıç Emel,Faiz Özlem,ÖZEN Furkan Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. Organic Communications, vol.13, no.2, 2020, ss.65 - 78.
AMA Baran a,Karakılıç E,Faiz Ö,ÖZEN F Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. Organic Communications. 2020; 13(2): 65 - 78.
Vancouver Baran a,Karakılıç E,Faiz Ö,ÖZEN F Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters. Organic Communications. 2020; 13(2): 65 - 78.
IEEE Baran a,Karakılıç E,Faiz Ö,ÖZEN F "Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters." Organic Communications, 13, ss.65 - 78, 2020.
ISNAD Baran, arif vd. "Synthesis of chalcone-containing zinc and cobalt metallophthalocyanines; investigation of their photochemical, DPPH radical scavenging and metal chelating characters". Organic Communications 13/2 (2020), 65-78.