Yıl: 2020 Cilt: 4 Sayı: 3 Sayfa Aralığı: 116 - 122 Metin Dili: İngilizce DOI: 10.26701/ems.736492 İndeks Tarihi: 22-01-2021

Evaluation of Plasticity Models Using Uniaxial Tensile Test

Öz:
In this study, it is aimed to evaluate plasticity model prediction performance for plastic behavior of materialsusing a uniaxial tensile test. For this purpose, von Mises, Hill-48, Hill-93, Barlat-89 and Hu -2003 plasticitymodels are studied, and DC04, DP780, 6000 series aluminum alloy are used as materials. Tensile tests areperformed with three directions (rolling, diagonal, transverse), and mechanical properties of materials areobtained. In addition, anisotropy coefficients of materials are calculated by uniaxial tensile tests. Validation ofplasticity models is performed using obtained material parameters. Yield locus and yield stresses-anisotropycoefficients depends on directions are used in evaluation of plasticity models. As a result of this study, Hu-2003showed the best modeling performance for all materials.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Yoon, J. W., Dick, R. E., & Barlat, F. (2011). A new analytical theory for earing generated from anisotropic plasticity. International Journal of Plasticity, 27(8), 1165-1184.
  • [2] Kuroda, M., & Tvergaard, V. (2000). Forming limit diagrams for anisotropic metal sheets with different yield criteria. International Journal of Solids and Structures, 37(37), 5037-5059.
  • [3] Schmidt, I. (2005). Some comments on formulations of anisotropic plasticity. Computational materials science, 32(3-4), 518-523.
  • [4] Firat, M., Kaftanoglu, B., & Eser, O. (2008). Sheet metal forming analyses with an emphasis on the springback deformation. journal of materials processing technology, 196(1-3), 135-148.
  • [5] Köleoğlu Gürsoy, Ö, & Esener, E. (2019). Malzeme Modellerinin Sac Metal Sonlu Elemanlar Analizi Tahmin Performansına Etkisinin Değerlendirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1).
  • [6] Li, X., Yang, Y., Wang, Y., Bao, J., & Li, S. (2002). Effect of the material-hardening mode on the springback simulation accuracy of V-free bending. Journal of Materials Processing Technology, 123(2), 209-211.
  • [7] Banabic, D., Comsa, D. S., Sester, M., Selig, M., Kubli, W., Mattiasson, K., & Sigvant, M. (2008, September). Influence of constitutive equations on the accuracy of prediction in sheet metal forming simulation. In Numisheet (pp. 37-42).
  • [8] Mars, J., Wali, M., Jarraya, A., Dammak, F., & Dhiab, A. (2015). Finite element implementation of an orthotropic plasticity model for sheet metal in low velocity impact simulations. Thin-Walled Structures, 89, 93-100.
  • [9] Kuwabara, T., Hashimoto, K., Iizuka, E., & Yoon, J. W. (2011). Effect of anisotropic yield functions on the accuracy of hole expansion simulations. Journal of Materials Processing Technology, 211(3), 475-481.
  • [10] Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D. D., Bieler, T. R., & Raabe, D. (2010). Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 58(4), 1152-1211.
  • [11] Ozsoy, M., Esener, E., Ercan, S., & Firat, M. (2014). Springback predictions of a dual-phase steel considering elasticity evolution in stamping process. Arabian Journal for Science and Engineering, 39(4), 3199-3207.
  • [12] Javanmardi, M. R., & Maheri, M. R. (2019). Extended finite element method and anisotropic damage plasticity for modelling crack propagation in concrete. Finite Elements in Analysis and Design, 165, 1-20.
  • [13] Zhou, R., Roy, A., & Silberschmidt, V. V. (2019). A crystal-plasticity model of extruded AM30 magnesium alloy. Computational Materials Science, 170, 109140.
  • [14] Meng, L., Chen, W., Yan, Y., Kitamura, T., & Feng, M. (2019). Modelling of creep and plasticity deformation considering creep damage and kinematic hardening. Engineering Fracture Mechanics, 218, 106582.
  • [15] Feng, D. C., Ren, X. D., & Li, J. (2018). Cyclic behavior modeling of reinforced concrete shear walls based on softened damage-plasticity model. Engineering Structures, 166, 363-375.
  • [16] Esmaeilpour, R., Kim, H., Park, T., Pourboghrat, F., Xu, Z., Mohammed, B., & Abu-Farha, F. (2018). Calibration of Barlat Yld2004-18P yield function using CPFEM and 3D RVE for the simulation of single point incremental forming (SPIF) of 7075-O aluminum sheet. International Journal of Mechanical Sciences, 145, 24-41.
  • [17] Soare, S. C., & Barlat, F. (2011). A study of the Yld2004 yield function and one extension in polynomial form: A new implementation algorithm, modeling range, and earing predictions for aluminum alloy sheets. European Journal of Mechanics-A/Solids, 30(6), 807-819.
  • [18] Standard, A. S. T. M. (2011). E8/E8M. Standard test methods for tension testing of metallic materials, 3, 66.
  • [19] Zang, S. L., Thuillier, S., Le Port, A., & Manach, P. Y. (2011). Prediction of anisotropy and hardening for metallic sheets in tension, simple shear and biaxial tension. International Journal of Mechanical Sciences, 53(5), 338-347.
  • [20] Mises R (1913) Mechanics of solids in plastic state. Göttinger Nachrichten Mathematical Physics 4:582–592
  • [21] Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033), 281-297.
  • [22] Hill, R. (1993). A user-friendly theory of orthotropic plasticity in sheet metals. International Journal of Mechanical Sciences, 35(1), 19-25.
  • [23] Barlat, F., & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International journal of plasticity, 5(1), 51-66.
  • [24] Hu, W. (2003). Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Materials Science and Engineering: A, 345(1-2), 139-144.
APA Ünlü A, ESENER E, FIRAT M (2020). Evaluation of Plasticity Models Using Uniaxial Tensile Test. , 116 - 122. 10.26701/ems.736492
Chicago Ünlü Aysema,ESENER Emre,FIRAT MEHMET Evaluation of Plasticity Models Using Uniaxial Tensile Test. (2020): 116 - 122. 10.26701/ems.736492
MLA Ünlü Aysema,ESENER Emre,FIRAT MEHMET Evaluation of Plasticity Models Using Uniaxial Tensile Test. , 2020, ss.116 - 122. 10.26701/ems.736492
AMA Ünlü A,ESENER E,FIRAT M Evaluation of Plasticity Models Using Uniaxial Tensile Test. . 2020; 116 - 122. 10.26701/ems.736492
Vancouver Ünlü A,ESENER E,FIRAT M Evaluation of Plasticity Models Using Uniaxial Tensile Test. . 2020; 116 - 122. 10.26701/ems.736492
IEEE Ünlü A,ESENER E,FIRAT M "Evaluation of Plasticity Models Using Uniaxial Tensile Test." , ss.116 - 122, 2020. 10.26701/ems.736492
ISNAD Ünlü, Aysema vd. "Evaluation of Plasticity Models Using Uniaxial Tensile Test". (2020), 116-122. https://doi.org/10.26701/ems.736492
APA Ünlü A, ESENER E, FIRAT M (2020). Evaluation of Plasticity Models Using Uniaxial Tensile Test. European Mechanical Science, 4(3), 116 - 122. 10.26701/ems.736492
Chicago Ünlü Aysema,ESENER Emre,FIRAT MEHMET Evaluation of Plasticity Models Using Uniaxial Tensile Test. European Mechanical Science 4, no.3 (2020): 116 - 122. 10.26701/ems.736492
MLA Ünlü Aysema,ESENER Emre,FIRAT MEHMET Evaluation of Plasticity Models Using Uniaxial Tensile Test. European Mechanical Science, vol.4, no.3, 2020, ss.116 - 122. 10.26701/ems.736492
AMA Ünlü A,ESENER E,FIRAT M Evaluation of Plasticity Models Using Uniaxial Tensile Test. European Mechanical Science. 2020; 4(3): 116 - 122. 10.26701/ems.736492
Vancouver Ünlü A,ESENER E,FIRAT M Evaluation of Plasticity Models Using Uniaxial Tensile Test. European Mechanical Science. 2020; 4(3): 116 - 122. 10.26701/ems.736492
IEEE Ünlü A,ESENER E,FIRAT M "Evaluation of Plasticity Models Using Uniaxial Tensile Test." European Mechanical Science, 4, ss.116 - 122, 2020. 10.26701/ems.736492
ISNAD Ünlü, Aysema vd. "Evaluation of Plasticity Models Using Uniaxial Tensile Test". European Mechanical Science 4/3 (2020), 116-122. https://doi.org/10.26701/ems.736492