Yıl: 2019 Cilt: 9 Sayı: 3 Sayfa Aralığı: 536 - 543 Metin Dili: İngilizce İndeks Tarihi: 06-05-2021

Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus

Öz:
Objective In this study; it was investigated the effect of intermittent hypoxia on cardiac phospholamban and Ca2+-calmodulin-dependent protein kinase II (CaMKII) levels in experimental diabetic cardiomyopathy. ( Sakarya Med J 2019, 9(3):536-543 ).Materials and MethodsWistar albino male rats (n=34) were randomized to four groups: control (C), intermittent hypoxia (IH), diabetes mellitus (DM) and diabetes mellitus + intermittent hypoxia (DM+IH). Injection of streptozotocin (50 mg/kg, i.p.) followed by 250 mg/dL and above blood glucose levels, was accepted as diabetes mellitus. The IH and DM+IH groups were subjected to 6 hours/day hypoxia for 42 days at a pressure corresponding to a height of 3000 m. Kruskal Wallis test, multiple comparisons tests, and Wilcoxon tests were used for evaluating.Results Rats were weighed routinely to demonstrate weight loss in diabetes and to monitor metabolic health status of rats. The weight increase in the IH group was at most and the DM group was at least. The differences between C and DM (p=0.003), C to DM+IH (p=0.024), IH to DM (p=0.001), IH to DM+IH (p=0.006) groups were statistically meaningful at the end of the experiment. It has not been detected any meaningful difference among the groups of Phospholamban/glyceraldehyde-3 phosphate dehydrogenase (PLB/GAPDH) (p=0.294). In terms of CaMKII/GAPDH, a statistically significant difference was found between C and DM; C and DM+IH and IH and DM+IH groups (p<0.05).Conclusion It was found that CaMKII mRNA levels decreased in DM and DM + IH groups. However, changes in the phospholamban have not been detected, but are important in the effects of translational and/ or posttranslational levels and in the changes that may occur in protein levels and/ or activations.
Anahtar Kelime:

Deneysel Tip 1 Diabetes Mellitusta Aralıklı Hipoksinin Kardiyak Kas Kalsiyum Homeostazisine Etkisi

Öz:
Amaç Bu çalışmada; Deneysel diyabetik kardiyomiyopatide aralıklı hipoksinin kardiyak fosfolamban ve Ca+2- kalmodulin bağımlı protein kinaz II (CaMKII) düzeylerine etkisiaraştırıldı. ( Sakarya Tıp Dergisi 2019, 9(3):536-543 ) Gereç veYöntemler Wistar albino erkek sıçanlar (n = 34) dört gruba randomize edildi: kontrol (C), aralıklı hipoksi (AH), diabetes mellitus (DM) ve diabetes mellitus + aralıklı hipoksi (DM +AH). Streptozotosin (50 mg/kg, i.p.) uygulandı ve 250 mg/dL ve üzeri kan glukoz seviyeleri diabetes mellitus olarak kabul edildi. AH ve DM+ AH grupları, 3000 m yüksekliğekarşılık gelen bir basınçta 42 gün boyunca 6 saat/ gün hipoksiye tabi tutuldu. Değerlendirmede, Kruskal Wallis testi, çoklu karşılaştırma testleri ve Wilcoxon testleri kullanıldı. Bulgular Diyabetteki kilo kaybını göstermek ve ratların metabolik sağlık durumlarının takibi için rutin olarak ratlar tartıldı. AH grubundaki ağırlık artışı en fazla idi ve DM grubuen azdı. C ve DM (p= 0.003), C- DM + AH (p= 0.024), AH- DM (p= 0.001), AH- DM+ IH (p= 0.006) arasındaki farklar istatistiksel olarak anlamlı bulundu. Fosfolamban/gliseraldehit-3 fosfat dehidrogenaz (PLB/ GAPDH) grupları arasında anlamlı bir fark bulunamamıştır (p= 0.294). CaMKII/ GAPDH açısından, C ve DM; C ve DM+ AH ileAH ve DM+ AH grupları arasında istatistiksel olarak anlamlı bir fark bulundu (p <0.05). Sonuç CaMKII mRNA düzeylerinin DM ve DM+IH gruplarında azaldığı bulundu. Bununla birlikte, fosfolambanda değişiklik tespit edilmemiştir, ancak fosfolambanda meydanagelecek değişiklikler translasyon ve/veya posttranslasyonal seviyelerin etkilerinde ve protein seviyelerinde ve/ veya aktivasyonlarında meydana gelebilecek değişikliklerdeönemlidir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213- 3223.
  • 2. Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart failure reviews. 2012;17(3):325-344.
  • 3. Liu JE, Palmieri V, Roman MJ, et al. Th e impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. Journal of the American College of Cardiology. 2001;37(7):1943-1949.
  • 4. Cai Z, Manalo DJ, Wei G, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation. 2003;108(1):79- 85.
  • 5. Milano G, Corno AF, Lippa S, Von Segesser LK, Samaja M. Chronic and intermittent hypoxia induce diff erent degrees of myocardial tolerance to hypoxia-induced dysfunction. Experimental biology and medicine (Maywood, NJ). 2002;227(6):389-397.
  • 6. Yu Z, Wang ZH, Yang HT. Calcium/calmodulin-dependent protein kinase II mediates cardioprotection of intermittent hypoxia against ischemic-reperfusion-induced cardiac dysfunction. American journal of physiology Heart and circulatory physiology. 2009;297(2):H735- 742.
  • 7. Xie Y, Zhu Y, Zhu WZ, et al. Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. American journal of physiology Heart and circulatory physiology. 2005;288(6):H2594-2602.
  • 8. Muhm JM, Rock PB, McMullin DL, et al. Eff ect of aircraft -cabin altitude on passenger discomfort. Th e New England journal of medicine. 2007;357(1):18-27.
  • 9. Tuncay E, Okatan EN, Vassort G, Turan B. ss-blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PloS one. 2013;8(7):e71014.
  • 10. Mp G, Joshi A, Joshi H, Sathyanarayana D, Subrahmanyam E, Chandrashekhar K. Antidiabetic potential of cow urine in streptozotocin- induced diabetic rats. Asian J �Tradit Med. 2010;6.
  • 11. Naghshin J, McGaff in KR, Witham WG, et al. Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6J mice. Journal of applied physiology (Bethesda, Md : 1985). 2009;107(3):787-793.
  • 12. Abeeleh M, Bani Ismail Z, R Alzaben K, et al. Induction of Diabetes Mellitus in Rats Using Intraperitoneal Streptozotocin: A Comparison between 2 Strains of Rats. European Journal of Scientific Research. 2009;32:398-402.
  • 13. M. Z. Diabetes mellitus and high altitude. Diabetologia Croatica. 2001;30::23-28.
  • 14. Anderson JD, Honigman B. Th e eff ect of altitude-induced hypoxia on heart disease: do acute, intermittent, and chronic exposures provide cardioprotection? High altitude medicine & biology. 2011;12(1):45-55.
  • 15. 1Guzel D, Dursun AD, Ficicilar H, et al. Eff ect of intermittent hypoxia on the cardiac HIF-1/ VEGF pathway in experimental type 1 diabetes mellitus. Anatolian journal of cardiology. 2016;16(2):76-83.
  • 16. Mirit E, Gross C, Hasin Y, Palmon A, Horowitz M. Changes in cardiac mechanics with heat acclimation: adrenergic signaling and SR-Ca regulatory proteins. American journal of physiology Regulatory, integrative and comparative physiology. 2000;279(1):R77-85.
  • 17. Schworer CM, Rothblum LI, Th ekkumkara TJ, Singer HA. Identification of novel isoforms of the delta subunit of Ca2+/calmodulin-dependent protein kinase II. Diff erential expression in rat brain and aorta. Th e Journal of biological chemistry. 1993;268(19):14443-14449.
  • 18. Joff e, II, Travers KE, Perreault-Micale CL, et al. Abnormal cardiac function in the streptozotocin-induced non-insulin-dependent diabetic rat: noninvasive assessment with doppler echocardiography and contribution of the nitric oxide pathway. Journal of the American College of Cardiology. 1999;34(7):2111-2119.
  • 19. Hoit BD, Castro C, Bultron G, Knight S, Matlib MA. Noninvasive evaluation of cardiac dysfunction by echocardiography in streptozotocin-induced diabetic rats. Journal of cardiac failure. 1999;5(4):324-333.
  • 20. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes. 2002;51(4):1166-1171.
  • 21. Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q. Decreased cardiac sarcoplasmic reticulum Ca2+ -ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. Journal of physiology and biochemistry. 2006;62(1):1-8.
  • 22. Kim HW, Ch YS, Lee HR, Park SY, Kim YH. Diabetic alterations in cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban protein expression. Life sciences. 2001;70(4):367-379.
  • 23. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS. Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes. 2001;50(9):2133-2138.
  • 24. Vasanji Z, Dhalla NS, Netticadan T. Increased inhibition of SERCA2 by phospholamban in the type I diabetic heart. Molecular and cellular biochemistry. 2004;261(1-2):245-249.
  • 25. Zhong Y, Ahmed S, Grupp IL, Matlib MA. Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. American journal of physiology Heart and circulatory physiology. 2001;281(3):H1137-1147.
  • 26. Tuncay E, Zeydanli EN, Turan B. Cardioprotective eff ect of propranolol on diabetes-induced altered intracellular Ca2+ signaling in rat. Journal of bioenergetics and biomembranes. 2011;43(6):747-756.
  • 27. Hattori Y, Matsuda N, Kimura J, et al. Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: implication in Ca2+ overload. Th e Journal of physiology. 2000;527 Pt 1:85-94.
  • 28. Kashihara H, Shi ZQ, Yu JZ, McNeill JH, Tibbits GF. Eff ects of diabetes and hypertension on myocardial Na+-Ca2+ exchange. Canadian journal of physiology and pharmacology. 2000;78(1):12-19.
  • 29. Bedoya FJ, Solano F, Lucas M. N-monomethyl-arginine and nicotinamide prevent streptozotocin-induced double strand DNA break formation in pancreatic rat islets. Experientia. 1996;52(4):344-347.
  • 30. Howe CJ, Lahair MM, McCubrey JA, Franklin RA. Redox regulation of the calcium/calmodulin-dependent protein kinases. Th e Journal of biological chemistry. 2004;279(43):44573- 44581.
  • 31. Zhu W, Woo AY, Yang D, Cheng H, Crow MT, Xiao RP. Activation of CaMKIIdeltaC is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. Th e Journal of biological chemistry. 2007;282(14):10833-10839.
  • 32. Wagner S, Ruff HM, Weber SL, et al. Reactive oxygen species-activated Ca/calmodulin kinase IIdelta is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circulation research. 2011;108(5):555-565.
  • 33. Yeung HM, Kravtsov GM, Ng KM, Wong TM, Fung ML. Chronic intermittent hypoxia alters Ca2+ handling in rat cardiomyocytes by augmented Na+/Ca2+ exchange and ryanodine receptor activities in ischemia-reperfusion. American journal of physiology Cell physiology. 2007;292(6):C2046-2056.
  • 34. Bekeredjian R, Walton CB, MacCannell KA, et al. Conditional HIF-1alpha expression produces a reversible cardiomyopathy. PloS one. 2010;5(7):e11693.
  • 35. Chen L, Lu XY, Li J, Fu JD, Zhou ZN, Yang HT. Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca2+ homeostasis and contraction via the sarcoplasmic reticulum and Na+/Ca2+ exchange mechanisms. American journal of physiology Cell physiology. 2006;290(4):C1221-1229.
  • 36. Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar NR. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. Th e Journal of biological chemistry. 2005;280(6):4321-4328.
  • 37. Czibik G. Complex role of the HIF system in cardiovascular biology. Journal of molecular medicine (Berlin, Germany). 2010;88(11):1101-11
APA tanyeli a, BASTUG M, Güzel Erdoğan D, DURSUN A, AKAT F, Tekin D, Ficicilar H (2019). Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. , 536 - 543.
Chicago tanyeli ayhan,BASTUG METIN,Güzel Erdoğan Derya,DURSUN ALI DOGAN,AKAT Fırat,Tekin Demet,Ficicilar Hakan Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. (2019): 536 - 543.
MLA tanyeli ayhan,BASTUG METIN,Güzel Erdoğan Derya,DURSUN ALI DOGAN,AKAT Fırat,Tekin Demet,Ficicilar Hakan Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. , 2019, ss.536 - 543.
AMA tanyeli a,BASTUG M,Güzel Erdoğan D,DURSUN A,AKAT F,Tekin D,Ficicilar H Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. . 2019; 536 - 543.
Vancouver tanyeli a,BASTUG M,Güzel Erdoğan D,DURSUN A,AKAT F,Tekin D,Ficicilar H Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. . 2019; 536 - 543.
IEEE tanyeli a,BASTUG M,Güzel Erdoğan D,DURSUN A,AKAT F,Tekin D,Ficicilar H "Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus." , ss.536 - 543, 2019.
ISNAD tanyeli, ayhan vd. "Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus". (2019), 536-543.
APA tanyeli a, BASTUG M, Güzel Erdoğan D, DURSUN A, AKAT F, Tekin D, Ficicilar H (2019). Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. Sakarya Tıp Dergisi, 9(3), 536 - 543.
Chicago tanyeli ayhan,BASTUG METIN,Güzel Erdoğan Derya,DURSUN ALI DOGAN,AKAT Fırat,Tekin Demet,Ficicilar Hakan Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. Sakarya Tıp Dergisi 9, no.3 (2019): 536 - 543.
MLA tanyeli ayhan,BASTUG METIN,Güzel Erdoğan Derya,DURSUN ALI DOGAN,AKAT Fırat,Tekin Demet,Ficicilar Hakan Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. Sakarya Tıp Dergisi, vol.9, no.3, 2019, ss.536 - 543.
AMA tanyeli a,BASTUG M,Güzel Erdoğan D,DURSUN A,AKAT F,Tekin D,Ficicilar H Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. Sakarya Tıp Dergisi. 2019; 9(3): 536 - 543.
Vancouver tanyeli a,BASTUG M,Güzel Erdoğan D,DURSUN A,AKAT F,Tekin D,Ficicilar H Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus. Sakarya Tıp Dergisi. 2019; 9(3): 536 - 543.
IEEE tanyeli a,BASTUG M,Güzel Erdoğan D,DURSUN A,AKAT F,Tekin D,Ficicilar H "Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus." Sakarya Tıp Dergisi, 9, ss.536 - 543, 2019.
ISNAD tanyeli, ayhan vd. "Effect of Intermittent Hypoxia on Cardiac Muscle CalciumHomeostasis in Experimental Type 1 Diabetes Mellitus". Sakarya Tıp Dergisi 9/3 (2019), 536-543.