Yıl: 2021 Cilt: 23 Sayı: 67 Sayfa Aralığı: 1 - 9 Metin Dili: İngilizce DOI: 10.21205/deufmd.2021236701 İndeks Tarihi: 16-06-2021

Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications

Öz:
Hydroxyapatite (HA) is the main inorganic component of bone and teeth and having high bioactivity,biocompatibility and osteointegration capability. Recently, wollastonite (WT) has been offered toreinforce HA to further increase biocompatibility and also mechanical strength. The focus of this study was to produce and characterize HA/WT composite granules with spray drying. Commercial WTparticles were introduced into the lab made HA nanoparticles in order to prepare a slurry for spraydrying. Spray dried HA/WT granules (SD-HA/WT) were investigated in terms of thermo-physicalproperties by SEM, FTIR, granule size analyzer, TG-DTA and XRD. The investigations proved thatcomposite granules were comprised both HA and WT phases. The granules contained HAnanoparticles (as a matrix) and WT particles that entangled in the HA matrix and on the surface of thegranules. The heat treatment at 750 °C led to the calcination of synthesized HA nanoparticles, while,the nanoparticles were sintered together by the heat treatment at 1000 °C and 1250 °C, thus themechanical integrity of the granules was developed. The phase structure of the granules wasremained stable (dominantly crystalline HA and WT) after the heat treatments. However, WTreinforcement caused to decrease the dehydroxylation temperature of HA and other calciumphosphates were formed after the heat treatment at 1000 °C. Rietveld Refinement analysis revealedthat composite granules had 82.3% and 15.6% HA and WT phases, respectively. Spherical shapedgranules with 36 μm median size (d50) would be used in thermal spraying, 3d printing or hotpressingprocesses.
Anahtar Kelime:

Biyomedikal Uygulamalar için Wollastonit Partikül Takviyeli Hidroksiapatit Kompozit Granüllerin Üretilmesi ve Karakterizasyonu

Öz:
Hidroksiapatit (HA) kemik ve dişin temel inorganik bileşenidir ve yüksek biyoaktiviteye, biyouyumluluğa ve kemik bütünleşim kabiliyetine sahiptir. Son zamanlarda, biyouyumluluk ve mekanik mukavemetini ileriye taşıyabilmek için HA yapısına wollastonitin (WT) takviye edilmesi önerilmektedir. Bu çalışmanın odak noktası, püskürtme kurutma ile HA/WT kompozit granüllerin üretilmesi ve karakterize edilmesidir. Ticari WT partikülleri, laboratuvar ortamında hazırlanan HA nanopartiküllerine katılarak, püskürtme kurutma çamuru hazırlanmıştır. Püskürtme kurutulan HA/WT granüllerinin (SD-HA/WT) termo-fiziksel özellikleri SEM, FTIR, granül boyut ölçümü, TGDTA ve XRD analizleriyle incelenmiştir. Analizler, kompozit granüllerin HA ve WT fazlarından oluştuğunu ortaya koymuştur. Granüller, matrisi oluşturan HA nanopartiküllerden ve HA matris içerisine ve yüzeye karışmış WT partiküllerden oluşmuştur. 750 °C’de yapılan ısıl işlem, sentezlenen HA nanopartiküllerin kalsinasyonuna neden olurken, 1000 °C ve 1250 °C’de yapılan ısıl işlemler sayesinde HA nanopartikülleri sinterlenmiştir, dolayısıyla granüllerin mekanik özellikleri artmıştır. Granüllerin faz yapıları ısıl işlemden sonra stabil kalmıştır (baskın olarak kristalin HA ve WT). Bununla birlikte, WT takviyesi HA’nın dehidroksilasyon sıcaklığının düşmesine neden olmuştur ve 1000 °C’de yapılan ısıl işlemden sonra diğer kalsiyum fosfat fazları oluşmuştur. Rietveld Refinement analizi, granüllerin sırasıyla %82,3 ve %15,6 HA ve WT fazına sahip olduğunu ortaya çıkarmıştır. 36 μm medyan boyutuna (d50) sahip olan küresel granüller termal sprey, 3b yazıcı ve sıcak presleme prosesinde kullanılabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Siddiqui, H., Pickering, K., Mucalo, M., Siddiqui, H.A., Pickering, K.L., Mucalo, M.R. 2018. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes, Materials, vol. 11, pp. 1813. DOI: 10.3390/ma11101813.
  • [2] Yan, S., Feng, L., Zhu, Q., Yang, W., Lan, Y., Li, D., Liu, Y., Xue, W., Guo, R., Wu, G. 2018. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium- Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration, ACS Biomaterials Science & Engineering, vol. 4, pp. 3291–3303. DOI: 10.1021/acsbiomaterials.8b00459.
  • [3] Wang, Q., Tang, P., Ge, X., Li, P., Lv, C., Wang, M., Wang, K., Fang, L., Lu, X. 2018. Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity, Applied Surface Science, vol. 462, pp. 118–126. DOI: 10.1016/j.apsusc.2018.08.068.
  • [4] Wei, L., Yang, H., Hong, J., He, Z., Deng, C. 2019. Synthesis and structure properties of Se and Sr codoped hydroxyapatite and their biocompatibility, Journal of Materials Science, vol. 54, pp. 2514– 2525. DOI: 10.1007/s10853-018-2951-7.
  • [5] Zhu, H., Guo, D., Sun, L., Li, H., Hanaor, D.A.H., Schmidt, F., Xu, K. 2018. Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite, Journal of the European Ceramic Society, vol. 38, pp. 5554–5562. DOI: 10.1016/j.jeurceramsoc.2018.07.056.
  • [6] Yao, H.-L., Hu, X.-Z., Bai, X.-B., Wang, H.-T., Chen, Q.- Y., Ji, G.-C. 2018. Comparative study of HA/TiO2 and HA/ZrO2 composite coatings deposited by high-velocity suspension flame spray (HVSFS), Surface and Coatings Technology, vol. 351, pp. 177–187. DOI: 10.1016/j.surfcoat.2018.07.082.
  • [7] Garcia, E., Miranzo, P., Sainz, M.A. 2018. Thermally sprayed wollastonite and wollastonite-diopside compositions as new modulated bioactive coatings for metal implants, Ceramics International, vol. 44, pp. 12896–12904. DOI: 10.1016/j.ceramint.2018.04.100.
  • [8] R. Morsy 2016. Synthesis and in vitro Bioactivity Mechanism of Synthetic α-wollastonite and β- wollastonite Bioceramics,. DOI: 10.4416/JCST2015-00028.
  • [9] Solonenko, A.P., Blesman, A.I., Polonyankin, D.A. 2018. Preparation and in vitro apatite-forming ability of hydroxyapatite and β-wollastonite composite materials, Ceramics International, vol. 44, pp. 17824–17834. DOI: 10.1016/j.ceramint.2018.06.251.
  • [10] Bastan, F.E., Erdogan, G., Moskalewicz, T., Ustel, F. 2017. Spray drying of hydroxyapatite powders: The effect of spray drying parameters and heat treatment on the particle size and morphology, Journal of Alloys and Compounds, vol. 724, pp. 586–596. DOI: 10.1016/j.jallcom.2017.07.116.
  • [11] Özbek, Y.Y., Baştan, F.E., Üstel, F. 2016. Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications, Journal of Thermal Analysis and Calorimetry, vol. 125, pp. 745–750. DOI: 10.1007/s10973-016- 5607-3.
  • [12] Ben, Y., Zhang, L., Wei, S., Zhou, T., Li, Z., Yang, H., Wang, Y., Selim, F.A., Wong, C., Chen, H. 2017. PVB modified spherical granules of β-TCP by spray drying for 3D ceramic printing, Journal of Alloys and Compounds, vol. 721, pp. 312–319. DOI: 10.1016/j.jallcom.2017.06.022.
  • [13] Wang, H., Liu, Y., Ning, X., Wang, Q., Wang, F., Chen, D. 2017. The influence of milling parameters on the characteristics of milled and spray-dried NiCoCrAlY–Al2O3 composite powders, Powder Metallurgy, vol. 60, pp. 15–21. DOI: 10.1080/00325899.2016.1264683.
  • [14] Lozano-Mandujano, D., Poblano-Salas, C.A., Ruiz- Luna, H., Esparza-Esparza, B., Giraldo-Betancur, A.L., Alvarado-Orozco, J.M., Trápaga-Martínez, L.G., Muñoz-Saldaña, J. 2017. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La<Subscript>2</Subscript>Zr<Subscript>2</Su bscript>O<Subscript>7</Subscript>/LaAlO<Subs cript>3</Subscript> Coatings, Journal of Thermal Spray Technology, vol. 26, pp. 1198–1206. DOI: 10.1007/s11666-017-0569-y.
  • [15] Sánchez, E., Moreno, A., Vicent, M., Salvador, M.D., Bonache, V., Klyatskina, E., Santacruz, I., Moreno, R. 2010. Preparation and spray drying of Al2O3– TiO2 nanoparticle suspensions to obtain nanostructured coatings by APS, Surface and Coatings Technology, vol. 205, pp. 987–992. DOI: 10.1016/j.surfcoat.2010.06.002.
  • [16] Bertrand, G., Roy, P., Filiatre, C., Coddet, C. 2005. Spray-dried ceramic powders: A quantitative correlation between slurry characteristics and shapes of the granules, Chemical Engineering Science, vol. 60, pp. 95–102. DOI: 10.1016/j.ces.2004.04.042.
  • [17] Schrijnemakers, A., André, S., Lumay, G., Vandewalle, N., Boschini, F., Cloots, R., Vertruyen, B. 2009. Mullite coatings on ceramic substrates: Stabilisation of Al2O3–SiO2 suspensions for spray drying of composite granules suitable for reactive plasma spraying, Journal of the European Ceramic Society, vol. 29, pp. 2169–2175. DOI: 10.1016/j.jeurceramsoc.2009.01.031.
  • [18] Patel, N., Gibson, I.R., Ke, S., Best, S.M., Bonfield, W. 2001. Calcining influence on the powder properties of hydroxyapatite, Journal of Materials Science: Materials in Medicine, vol. 12, pp. 181– 188. DOI: 10.1023/A:1008986430940.
  • [19] Wang, A.-J., Lu, Y.-P., Zhu, R.-F., Li, S.-T., Xiao, G.-Y., Zhao, G.-F., Xu, W.-H. 2008. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres, Journal of Biomedical Materials Research Part A, vol. 87A, pp. 557–562. DOI: 10.1002/jbm.a.31895.
  • [20] Baştan, F.E., Atiq Ur Rehman, M., Avcu, Y.Y., Avcu, E., Üstel, F., Boccaccini, A.R. 2018. Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications, Colloids and Surfaces B: Biointerfaces, vol. 169, pp. 176–182. DOI: 10.1016/j.colsurfb.2018.05.005.
  • [21] Palakurthy, S., P, A.A., K, V.R. 2019. In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications, Ceramics International, . DOI: 10.1016/j.ceramint.2019.03.169.
  • [22] Zhao, S.-N., Yang, D.-L., Wang, D., Pu, Y., Le, Y., Wang, J.-X., Chen, J.-F. 2019. Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites, Journal of Materials Science, vol. 54, pp. 3878–3892. DOI: 10.1007/s10853-018-3125- 3.
  • [23] Chen, Z., Zhai, J., Wang, D., Chen, C. 2018. Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser, Ceramics International, vol. 44, pp. 10204–10209. DOI: 10.1016/j.ceramint.2018.03.013.
APA BASTAN F, Karaarslan O, Ustel F (2021). Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. , 1 - 9. 10.21205/deufmd.2021236701
Chicago BASTAN FATIH ERDEM,Karaarslan Onurcan,Ustel Fatih Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. (2021): 1 - 9. 10.21205/deufmd.2021236701
MLA BASTAN FATIH ERDEM,Karaarslan Onurcan,Ustel Fatih Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. , 2021, ss.1 - 9. 10.21205/deufmd.2021236701
AMA BASTAN F,Karaarslan O,Ustel F Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. . 2021; 1 - 9. 10.21205/deufmd.2021236701
Vancouver BASTAN F,Karaarslan O,Ustel F Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. . 2021; 1 - 9. 10.21205/deufmd.2021236701
IEEE BASTAN F,Karaarslan O,Ustel F "Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications." , ss.1 - 9, 2021. 10.21205/deufmd.2021236701
ISNAD BASTAN, FATIH ERDEM vd. "Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications". (2021), 1-9. https://doi.org/10.21205/deufmd.2021236701
APA BASTAN F, Karaarslan O, Ustel F (2021). Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 1 - 9. 10.21205/deufmd.2021236701
Chicago BASTAN FATIH ERDEM,Karaarslan Onurcan,Ustel Fatih Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23, no.67 (2021): 1 - 9. 10.21205/deufmd.2021236701
MLA BASTAN FATIH ERDEM,Karaarslan Onurcan,Ustel Fatih Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.23, no.67, 2021, ss.1 - 9. 10.21205/deufmd.2021236701
AMA BASTAN F,Karaarslan O,Ustel F Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2021; 23(67): 1 - 9. 10.21205/deufmd.2021236701
Vancouver BASTAN F,Karaarslan O,Ustel F Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2021; 23(67): 1 - 9. 10.21205/deufmd.2021236701
IEEE BASTAN F,Karaarslan O,Ustel F "Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications." Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23, ss.1 - 9, 2021. 10.21205/deufmd.2021236701
ISNAD BASTAN, FATIH ERDEM vd. "Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (2021), 1-9. https://doi.org/10.21205/deufmd.2021236701