Yıl: 2021 Cilt: 4 Sayı: 1 Sayfa Aralığı: 10 - 16 Metin Dili: İngilizce DOI: 10.33401/fujma.811058 İndeks Tarihi: 03-08-2021

Fibonacci Elliptic Biquaternions

Öz:
A. F. Horadam defined the complex Fibonacci numbers and Fibonacci quaternions in themiddle of the 20th century. Half a century later, S. Halıcı introduced the complex Fibonacciquaternions by inspiring from these definitions and discussed some properties of them.Recently, the elliptic biquaternions, which are generalized form of the complex and realquaternions, have been presented. In this study, we introduce the set of Fibonacci ellipticbiquaternions that includes the set of complex Fibonacci quaternions as a special case, andinvestigate some properties of Fibonacci elliptic biquaternions. Furthermore, we give theBinet formula and Cassini’s identity in terms of Fibonacci elliptic biquaternions. Finally,we give elliptic and real matrix representations of Fibonacci elliptic biquaternions.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • [1] B. L. van der Waerden, Hamilton’s discovery of quaternions, Math. Mag., 49 (1976), 227-234.
  • [2] W. R. Hamilton, Lectures on quaternions, Hodges and Smith, Dublin, 1853.
  • [3] A. F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, Am. Math. Mon., 70 (1963), 289-291.
  • [4] S. Halıcı, On complex Fibonacci quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 105-112.
  • [5] M. R. Iyer, Some results on Fibonacci quaternions, Fibonacci Q., 7 (1969), 201-210.
  • [6] T. Eris¸ir, M. A. Güngör, On Fibonacci spinors, Int. J. Geom. Methods Mod. (2020), DOI: 10.1142/S0219887820500656.
  • [7] M. Akyigit, H. H. Kösal, M. Tosun, ¨ Fibonacci generalized quaternions, Adv. Appl. Clifford Algebras, 24 (2014), 631-641.
  • [8] C. Flaut, V. Shpakivskyi, Real matrix representations for the complex quaternions, Adv. Appl. Clifford Algebras, 23 (2013), 657-671.
  • [9] K. E. Özen, M. Tosun, Elliptic biquaternion algebra, AIP Conf. Proc., 1926 (2018), 020032.
  • [10] I. M. Yaglom, Complex Numbers in Geometry, Academic Press, Newyork, 1968.
  • [11] A. A. Harkin, J. B. Harkin, Geometry of generalized complex numbers, Math. Mag., 77(2) (2004), 118-129.
  • [12] K. Eren, S. Ersoy, Burmester theory in Cayley-Klein planes with affine base, J. Geom., 109(3) (2018), 45.
  • [13] K. Eren, S. Ersoy, Revisiting Burmester theory with complex forms of Bottema’s instantaneous invariants, Complex Var. Elliptic Equ., 62(4) (2017), 431-437.
  • [14] Z. Derin, M. A. Güngör On Lorentz transformations with elliptic biquaternions, In: Hvedri, I. (ed.) Tblisi-Mathematics, pp 121-140. Sciendo, Berlin (2020).
  • [15] Y. Kulac¸, M. Tosun, Some equations on p-complex Fibonacci numbers, AIP Conf. Proc., 1926 (2018), 020024.
  • [16] R. A. Dunlap, The golden ratio and Fibonacci numbers, World Scientific, 1997.
  • [17] T. Koshy, Fibonacci and Lucas numbers with applications, A Wiley-Interscience Publication, U.S.A, 2001.
  • [18] K. E. Özen, M. Tosun, Further results for elliptic biquaternions, Conf. Proc. Sci. Technol., 1 (2018), 20-27.
  • [19] K. E. Özen, M. Tosun, Elliptic matrix representations of elliptic biquaternions and their applications, Int. Electron. J. Geom., 11 (2018), 96-103.
  • [20] K. E. Özen, M. Tosun, ¨ A general method for solving linear elliptic biquaternion equations, Complex Var. Elliptic Equ., (2020), 1-12, DOI: 10.1080/17476933.2020.1738409.
  • [21] K. E. Özen, A general method for solving linear matrix equations of elliptic biquaternions with applications, AIMS Math., 5 (2020), 2211–2225
APA Özen K, Tosun M (2021). Fibonacci Elliptic Biquaternions. , 10 - 16. 10.33401/fujma.811058
Chicago Özen Kahraman Esen,Tosun Murat Fibonacci Elliptic Biquaternions. (2021): 10 - 16. 10.33401/fujma.811058
MLA Özen Kahraman Esen,Tosun Murat Fibonacci Elliptic Biquaternions. , 2021, ss.10 - 16. 10.33401/fujma.811058
AMA Özen K,Tosun M Fibonacci Elliptic Biquaternions. . 2021; 10 - 16. 10.33401/fujma.811058
Vancouver Özen K,Tosun M Fibonacci Elliptic Biquaternions. . 2021; 10 - 16. 10.33401/fujma.811058
IEEE Özen K,Tosun M "Fibonacci Elliptic Biquaternions." , ss.10 - 16, 2021. 10.33401/fujma.811058
ISNAD Özen, Kahraman Esen - Tosun, Murat. "Fibonacci Elliptic Biquaternions". (2021), 10-16. https://doi.org/10.33401/fujma.811058
APA Özen K, Tosun M (2021). Fibonacci Elliptic Biquaternions. Fundamental journal of mathematics and applications (Online), 4(1), 10 - 16. 10.33401/fujma.811058
Chicago Özen Kahraman Esen,Tosun Murat Fibonacci Elliptic Biquaternions. Fundamental journal of mathematics and applications (Online) 4, no.1 (2021): 10 - 16. 10.33401/fujma.811058
MLA Özen Kahraman Esen,Tosun Murat Fibonacci Elliptic Biquaternions. Fundamental journal of mathematics and applications (Online), vol.4, no.1, 2021, ss.10 - 16. 10.33401/fujma.811058
AMA Özen K,Tosun M Fibonacci Elliptic Biquaternions. Fundamental journal of mathematics and applications (Online). 2021; 4(1): 10 - 16. 10.33401/fujma.811058
Vancouver Özen K,Tosun M Fibonacci Elliptic Biquaternions. Fundamental journal of mathematics and applications (Online). 2021; 4(1): 10 - 16. 10.33401/fujma.811058
IEEE Özen K,Tosun M "Fibonacci Elliptic Biquaternions." Fundamental journal of mathematics and applications (Online), 4, ss.10 - 16, 2021. 10.33401/fujma.811058
ISNAD Özen, Kahraman Esen - Tosun, Murat. "Fibonacci Elliptic Biquaternions". Fundamental journal of mathematics and applications (Online) 4/1 (2021), 10-16. https://doi.org/10.33401/fujma.811058