Yıl: 2021 Cilt: 25 Sayı: 3 Sayfa Aralığı: 690 - 698 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.901153 İndeks Tarihi: 29-07-2022

CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance

Öz:
Proton exchange membrane (PEM) fuel cell performance depends substantially on the geometry, configuration of the flow channels, and size. A right gas flow field pattern requires a homogeneous reactant distribution, low-pressure drop, and good water management. This paper outlines a numerical study, investigated the influence of the U-type, Z-type, and serpentine flow field configuration on the steady-state cell performance using the CFD technique ANSYS FLUENT PEMFC module. The main goal of this study focuses on a novel perspective for enhancing the design of the PEMFC resulting in better performance. The results indicate that the PEMFC with serpentine flow field configuration yields a significantly higher power density compared to the other designs.
Anahtar Kelime: CFD PEM Fuel Cell Cell Performance Flow Field Design

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Wang, Y. et al. (2020) ‘Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology’, Energy and AI. Elsevier Ltd, 1, p. 100014.
  • [2] Pei, P. et al. (2016) ‘A review on water fault diagnosis of PEMFC associated with the pressure drop Fourier transform’, Applied Energy. Elsevier Ltd, 173, pp. 366–385.
  • [3] Wilberforce et al. (2019) ‘A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells’, Renewable and Sustainable Energy Reviews. Elsevier Ltd, 111(April), pp. 236–260.
  • [4] Kahraman, H. and Orhan, M. F. (2017) ‘Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling’, Energy Conversion and Management. Elsevier Ltd, 133, pp. 363–384.
  • [5] Perng, S. W. and Wu, H. W. (2015) ‘A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC’, Applied Energy. Elsevier Ltd, 143, pp.81–95
  • [6] Liu, C. et al. (2006) ‘Reactant gas transport and cell performance of proton exchange membrane fuel cells with tapered flow field design’, Journal of Power Sources 158, pp. 78–87.
  • [7] Yan, W. M. et al. (2008) ‘Effects of serpentine flow field with outlet channel contraction on cell performance of proton exchange membrane fuel cells’, Journal of Power Sources, 178(1), pp. 174–180.
  • [8] Obayopo, S. O., Bello-Ochende, T. and Meyer (2011) ‘Performance enhancement of a PEM fuel cell through reactant gas channel and gas diffusion layer optimisation’, Africa, (November).
  • [9] Ahmed, D. H. and Sung, H. J. (2006) ‘Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density’, Journal of Power Sources, 162(1), pp. 327–339.
  • [10] Ozdemir and Taymaz (2021) ‘Numerical investigation of the effect of blocked gas flow field on PEM fuel cell performance’, International Journal of Environmental Science and Technology. Springer Berlin Heidelberg.
  • [11] Shen et al. (2018) ‘Performance investigation of PEMFC with rectangle blockages in Gas Channel based on field synergy principle’, Heat and Mass Transfer/Waerme- und Stoffuebertragung. Heat and Mass Transfer.
  • [12] Kuo, J. K., Yen, T. S. and Chen, C. K. (2008) ‘Improvement of performance of gas flow channel in PEM fuel cells’, Energy Conversion and Management, 49(10), pp. 2776–2787.
  • [13] Yoon, Y. G. et al. (2004) ‘Effects of channel configurations of flow field plates on the performance of a PEMFC’, Electrochimica Acta, 50(2–3 SPEC. ISS.), pp. 709–712.
  • [14] Yin, Y. et al. (2018) ‘Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel’, International Journal of Hydrogen Energy. Elsevier Ltd, 43(16), pp. 8048–8062.
  • [15] Limjeerajarus, N. and Charoen-amornkitt, P. (2015) ‘Effect of different flow field designs and number of channels on performance of a small PEFC’, International Journal of Hydrogen Energy. Elsevier Ltd, 40(22), pp. 7144–7158.
  • [16] Shen, J., Tu, Z. and Chan, S. H. (2020) ‘Evaluation criterion of different flow field patterns in a proton exchange membrane fuel cell’, Energy Conversion and Management. Elsevier, 213(April), p. 112841.
  • [17] Shimpalee, S., Greenway, S. and Zee, J. W. Van (2006) ‘The impact of channel path length on PEMFC flow-field design’, 160(January), pp. 398–406.
  • [18] Zhu, W. and Zheng, M. (2019) ‘Radial flow field of circular bipolar plate for proton exchange membrane fuel cells’, International Journal of Heat and Technology, 37(3), pp. 733–740.
  • [19] Wang, L. et al. (2003) ‘A parametric study of PEM fuel cell performances’, International Journal of Hydrogen Energy, 28(11), pp. 1263–1272.
  • [20] Nguyen, P. T., Berning, T. and Djilali, N. (2004) ‘Computational model of a PEM fuel cell with serpentine gas flow channels’, 130, pp.149–157.
APA ÖZDEMİR S, Taymaz I (2021). CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. , 690 - 698. 10.16984/saufenbilder.901153
Chicago ÖZDEMİR Safiye Nur,Taymaz Imdat CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. (2021): 690 - 698. 10.16984/saufenbilder.901153
MLA ÖZDEMİR Safiye Nur,Taymaz Imdat CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. , 2021, ss.690 - 698. 10.16984/saufenbilder.901153
AMA ÖZDEMİR S,Taymaz I CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. . 2021; 690 - 698. 10.16984/saufenbilder.901153
Vancouver ÖZDEMİR S,Taymaz I CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. . 2021; 690 - 698. 10.16984/saufenbilder.901153
IEEE ÖZDEMİR S,Taymaz I "CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance." , ss.690 - 698, 2021. 10.16984/saufenbilder.901153
ISNAD ÖZDEMİR, Safiye Nur - Taymaz, Imdat. "CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance". (2021), 690-698. https://doi.org/10.16984/saufenbilder.901153
APA ÖZDEMİR S, Taymaz I (2021). CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 690 - 698. 10.16984/saufenbilder.901153
Chicago ÖZDEMİR Safiye Nur,Taymaz Imdat CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no.3 (2021): 690 - 698. 10.16984/saufenbilder.901153
MLA ÖZDEMİR Safiye Nur,Taymaz Imdat CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.25, no.3, 2021, ss.690 - 698. 10.16984/saufenbilder.901153
AMA ÖZDEMİR S,Taymaz I CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(3): 690 - 698. 10.16984/saufenbilder.901153
Vancouver ÖZDEMİR S,Taymaz I CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(3): 690 - 698. 10.16984/saufenbilder.901153
IEEE ÖZDEMİR S,Taymaz I "CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25, ss.690 - 698, 2021. 10.16984/saufenbilder.901153
ISNAD ÖZDEMİR, Safiye Nur - Taymaz, Imdat. "CFD Investigation of Different Flow Field Designs for Efficient PEMFC Performance". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (2021), 690-698. https://doi.org/10.16984/saufenbilder.901153