Yıl: 2020 Cilt: 24 Sayı: 1 Sayfa Aralığı: 1 - 9 Metin Dili: İngilizce DOI: 10.16984/saufenbilder.396984 İndeks Tarihi: 22-12-2021

An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method

Öz:
In this study, HAp reinforcement into UHMWPE matrix having 1.0 % wt. mass and its effects on microstructural and mechanical properties of the UHMWPE composites were investigated. UHMWPE composites reinforced with 0.5, 1 and 2.0 wt. % nano HAp powders, respectively were successfully produced by solution and gelation method. SEM studies showed that HAP nano particles were homogenously distributed into UHMWPE matrix and good cross-linked with the matrix. SEM-map EDS analysis confirmed SEM. FTIR results revealed that HAp incorporation into matrix was conducted and crystallization of UHMWPE increased by increment in amount of HAp results in deepening crystallization peaks at nearby 500 and 1500 cm-1. DSC results, which is useful technique to determine the variation of melting point and crystallization ratio of UHMWPE composites, indicated that there was no remarkable change in melting points of composites, while crystallinity of the samples generally showed slight increase by increasing amount of nano HAp particles. The tensile test instrument was utilized to determine elastic modulus of the samples and their elastic modulus were raised from 1050 to 1900 MPa with higher HAp reinforcement. It can be concluded that UHMWPE-1 % wt. HAp composites have promising results by being paired with crystallinity and elastic modulus. Keywords: UHMWPE, HAp, composite, crystallinity, DSC, Young’s modulus Keywords: UHMWPE, HAp, composite, crystallinity, DSC, Young’s modulus
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] D. Gopi, L. Kavitha, D. Rajeswari, "Synthesis of Pure and Substituted Hydroxyapatite Nanoparticles by Cost Effective Facile Methods", in: M. Aliofkhazraei (Ed.), Handb. Nanoparticles, pp. 167–190, 2015.
  • [2] Ž. Mitić, A. Stolić, S. Stojanović, S. Najman, N. Ignjatović, G. Nikolić, M. Trajanović, "Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review", Materials Science and Engineering C., vol.79, pp. 930-49, 2017.
  • [3] G. Celebi Efe, F. Ozaydin, H. Ucisik, C. Bindal, H. Liang, "Production of ultra-high molecular weight polyethylene-granite composite films by gelation/crystallization", J Therm Analy. Calorim., vol. 125, pp. 659-65, 2016.
  • [4] S. Firdous, M. Fuzail, M. Atif, M. Nawaz, "Polarimetric characterization of ultra-high molecular weight polyethylene (UHMWPE) for bone substitute biomaterials", Optik, vol. 122, pp. 99-104, 2011.
  • [5] A. Golchin, A. Villain, N. Emami, "Tribological behaviour of nanodiamond reinforced UHMWPE in water-lubricated contacts", Tribology International, vol. 110, pp. 195-200, 2017.
  • [6] D. L. P. Macuvele, J. Nones, J. V. Matsinhe, M. M. Lima, C. Soares, M. A. Fiori, H. G. Riella, "Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review", Materials Science and Engineering: C., vol. 76, pp. 1248-1262, 2017.
  • [7] F. Baino, G. Novajra, C. Vitale-Brovarone, "Bioceramics and Scaffolds: A Winning Combination for Tissue Engineering", Front. Bioeng. Biotechnol., vol. 3, no. 202, pp. 1-17, 2015.
  • [8] I.V. Pylypchuk, P.P. Gorbyk, A.L. Petranovska, O.M. Korduban, P.E. Markovsky, O.M. Ivasyshyn, "Chapter 7 - Formation of biomimetic hydroxyapatite coatings on the surface of titanium and Ti-containing alloys: Ti– 6Al–4V and Ti–Zr–Nb", Elsevier Inc., 2016.
  • [9] M.A.E. Cruz, G.C.M. Ruiz, A.N. Faria, D.C. Zancanela, L.S. Pereira, P. Ciancaglini, A.P. Ramos, "Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces", Appl. Surf. Sci., vol. 370, pp. 459-468, 2016.
  • [10] Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi, R. Tang, "Role of hydroxyapatite nanoparticle size in bone cell proliferation", J. Mater. Chem., vol. 17, pp. 3780-87, 2007.
  • [11] S. V. Dorozhkin, "Nanosized and nanocrystalline calcium orthophosphates", Acta Biomater., vol. 6, pp. 715-34, 2010.
  • [12] Z. Dong, Y. Li, Q. Zou, "Degradation and biocompatibility of porous nanohydroxyapatite/polyurethane composite scaffold for bone tissue engineering", Appl. Surf. Sci. vol. 255, pp. 6087-91, 2009.
  • [13] Y. Wang, L. Liu, S. Guo, "Characterization of biodegradable and cytocompatible nanohydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro", Polym. Degrad. Stab., vol. 95, pp. 207-13, 2010.
  • [14] M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, "Synthesis methods for nanosized hydroxyapatite indiverse structures", Acta Biomaterialia, vol. 9, pp. 7591- 7621, 2013.
  • [15] S. Isaji, Y. Bin, M. Matsuo, "Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films", Polymer, vol. 50, pp. 1046- 53, 2009.
  • [16] D. I. Chukov, A. Stepashkin, A. V. Maksimkin, V. V. Tcherdyntsev, S. D. Kaloshkin, K. V. Kuskov, V. I. Bugakov, "Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPEmatrix composites", Compos B., vol. 76, pp. 79-88, 2015.
  • [17] H. Mahfuz, M. R. Khan, T. Leventouri, E. Liarokapis, "Investigation of MWCNT reinforcement on the strain hardening behavior of ultrahigh molecular weight polyethylene", J Nanotechnol., 2011.
  • [18] A.V. Maksimkin, A. P. Kharitonov, S. G. Nematulloev, S. D. Kaloshkin, M. V. Gorshenkov, D. I. Chukov, I. V. Shchetinina, "Fabrication of oriented UHMWPE films using low solvent concentration", Materials & Design, vol. 115, pp. 133-137, 2017.
  • [19] S. V. Panin, L. A. Kornienko, N. Sonjaitham, M. V. Tchaikina, V. P. Sergeev, L. R. Ivanova, S. V. Shilko, "WearResistant Ultrahigh-Molecular-Weight Polyethylene-Based Nano- and Microcomposites for Implants", Journal of Nanotechnology, 2012.
  • [20] J. Yeh, Wu T. Wei, Y. C. Lai, Q.C. Li, H.P. Zhou, Q. Zhou, C.H. Tsou, Y.C. Shu, C.Y. Huang, K. S. Huang, "Ultradrawing Properties of Ultrahigh Molecular Weight Polyethylene/Functionalized Carbon Nanotube Fibers and Transmittance Properties of Their Gel Solutions", Polymer Engineering and Science, vol. 51, no. 12, pp. 2552 - 2563, 2011.
  • [21] D. Xiong, J. Lin, D. Fan, Z. Jin, "Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication", Journal of Materials Science: Materials in Medicine, vol. 18, no. 11, pp. 2131- 35, 2007.
  • [22] B. P. Chang, H. Md Akil, R. Md. Nasir, "Mechanical and Tribological Properties of Zeolite-reinforced UHMWPE Composite for Implant Application", Procedia Engineering, vol. 68, pp. 88-94, 2013.
  • [23] S. Sharma, J. Bijwe, S. Panier, M. Sharma, "Abrasive wear performance of SiC-UHMWPE nano-composites – Influence of amount and size", Wear, vol. 332, no. 333, pp. 863-71, 2015.
  • [24] S. Sharma, J. Bijwe, S. Panier, "Assessment of potential of nano and micro-sized boron carbide particles to enhance the abrasive wear resistance of UHMWPE", Composites Part B: Engineering, vol.99, pp. 312-20, 2016.
  • [25] A. Gupta, G. Tripathi, D. Lahiri, K. Balani, "Compression Molded Ultra High Molecular Weight Polyethylene–Hydroxyapatite– Aluminum Oxide–Carbon Nanotube Hybrid Composites for Hard Tissue Replacement", Journal of Materials Science & Technology, vol. 29, no. 6, pp. 514-22, 2013.
  • [26] A. Paz, D. Guadarrama, M. López, J. E. Gonzales, N. Brizuela, J. A. Aragón, "Comparative Study of Hydroxyapatite Nanoparticles Synthesized By Different Routes", Quim. Nov, vol. 35, pp. 1724-27, 2012.
  • [27] H. K. Varma, S. S. Babu, "Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method", Ceram. Int., vol. 31, pp. 109- 14.
  • [28] S. M. Kurtz, "The UHMWPE Handbook: Ultra- High Molecular Weight Polyethylene in Total Joint Replacement", Elsevier Academic Press., 2004.
  • [29] Y. Kong, J. N. Hay, "The measurement of the crystallinity of polymers by DSC", Polymer., vol. 43, pp. 3873-3878, 2002.
  • [30] N. Ning, S. Fu, W. Zhang, F. Chen, K. Wang, H. Deng, Q. Zhang, Q. Fu, "Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization", Progress in Polymer Science, vol. 37, no. 10, pp. 1425-55, 2012.
  • [31] X. Zhao, Q. Zhang, D. Chen, P. Lu, "Enhanced Mechanical Properties of GrapheneBased Poly(vinyl alcohol) Composites", Macromolecules, vol. 43, pp. 2357-2363, 2010.
APA EFE G, Bindal C, Türk S, TÜRK İ, BİNDAL C (2020). An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. , 1 - 9. 10.16984/saufenbilder.396984
Chicago EFE Gözde Çelebi,Bindal Cuma,Türk Serbülent,TÜRK İbrahim,BİNDAL Cuma An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. (2020): 1 - 9. 10.16984/saufenbilder.396984
MLA EFE Gözde Çelebi,Bindal Cuma,Türk Serbülent,TÜRK İbrahim,BİNDAL Cuma An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. , 2020, ss.1 - 9. 10.16984/saufenbilder.396984
AMA EFE G,Bindal C,Türk S,TÜRK İ,BİNDAL C An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. . 2020; 1 - 9. 10.16984/saufenbilder.396984
Vancouver EFE G,Bindal C,Türk S,TÜRK İ,BİNDAL C An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. . 2020; 1 - 9. 10.16984/saufenbilder.396984
IEEE EFE G,Bindal C,Türk S,TÜRK İ,BİNDAL C "An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method." , ss.1 - 9, 2020. 10.16984/saufenbilder.396984
ISNAD EFE, Gözde Çelebi vd. "An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method". (2020), 1-9. https://doi.org/10.16984/saufenbilder.396984
APA EFE G, Bindal C, Türk S, TÜRK İ, BİNDAL C (2020). An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 1 - 9. 10.16984/saufenbilder.396984
Chicago EFE Gözde Çelebi,Bindal Cuma,Türk Serbülent,TÜRK İbrahim,BİNDAL Cuma An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, no.1 (2020): 1 - 9. 10.16984/saufenbilder.396984
MLA EFE Gözde Çelebi,Bindal Cuma,Türk Serbülent,TÜRK İbrahim,BİNDAL Cuma An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.24, no.1, 2020, ss.1 - 9. 10.16984/saufenbilder.396984
AMA EFE G,Bindal C,Türk S,TÜRK İ,BİNDAL C An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 24(1): 1 - 9. 10.16984/saufenbilder.396984
Vancouver EFE G,Bindal C,Türk S,TÜRK İ,BİNDAL C An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 24(1): 1 - 9. 10.16984/saufenbilder.396984
IEEE EFE G,Bindal C,Türk S,TÜRK İ,BİNDAL C "An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method." Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24, ss.1 - 9, 2020. 10.16984/saufenbilder.396984
ISNAD EFE, Gözde Çelebi vd. "An Investigation on UHMWPE-HAp Composites Manufactured by Solution-Gelation Method". Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/1 (2020), 1-9. https://doi.org/10.16984/saufenbilder.396984