Yıl: 2022 Cilt: 46 Sayı: 2 Sayfa Aralığı: 367 - 377 Metin Dili: İngilizce DOI: 10.3906/kim-2107-29 İndeks Tarihi: 05-07-2022

Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate

Öz:
In this study, a water-soluble metal-free phthalocyanine (SPC) containing sodium 2-mercaptoethanesulfonate substituents at the peripheral positions was used to investigate the algaecidal properties and oxidative effects on the growth of two microalgal species, Arthrospira platensis and Chlorella vulgaris. Although OD at 560 nm and chlorophyll-a content were decreased in Arthrospira platensis during 7 days depending on dose and time, increases in both OD at 750 and chlorophyll-a content at 8 ppb (parts per billion) concentration on the 7th day were observed in Chlorella vulgaris. However, total SOD (superoxide dismutase) and GR (glutathione reductase) enzyme activity of A. platensis cultures did not display any alteration in all concentrations, SOD activity displayed an increase significantly at 2 ppb concentration, and GR activity showed increases at 1, 2, and 4 ppb concentrations in C. vulgaris application. In A. platensis application, APX (ascorbate peroxidase) activity decreased at 0.50 ppb, 1 ppb, and 1.5 ppb concentrations. In addition, C. vulgaris application showed decreases at all concentrations. When MDA content increased at all concentrations, the $H_2 O_2$ content increased only at significatly 0.125 ppb concentration in A. platensis cultures. Both MDA (malondialdehyde) and $H_2 O_2$ (hydrogen peroxide) content of C. vulgaris cultures showed a statistically significant decrease at all concentrations compared to control. Free proline decreased at 0.25 ppb, 0.50 ppb, 1 ppb, and 1.5 ppb concentrations in A. platensis application, and it decreased at all the concentrations of C. vulgaris application. It concluded that this compound has inhibition effects on A. platensis, but it supports growth in C. vulgaris. Therefore, this synthesized phthalocyanine compound (SPC) should be consumed carefully, and the contamination to aquatic ecosystems should be prevented.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Reynolds CS. The ecology of phytoplankton. Cambridge: Cambridge University Press, (2006).
  • 2. Chapman RL. Algae: the world’s most important “plants”-an introduction. Mitigation and Adaptation Strategies for Global Change 2013; 18 (1): 5-12.
  • 3. Vonshak A. Spirulina: Growth, Physiology and. Spirulina platensis Arthrospira: Physiology, Cell-Biology and Biotechnology, Abingdon: Taylor and Francis 1997.
  • 4. Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 2014; 35: 265-278. doi: 10.1016/j.rser.2014.04.007
  • 5. Duygu D. A Study on the Production of Batch Cultures in Semi-Continuous Culture System of Chlorella vulgaris Beyerinck [Beijerinck] (Chlorophyta) Strains,’ Journal of Limnology and Freshwater Fisheries Research 2017; 3(2): 61-67. 276 doi: 10.17216/limnofish.280547
  • 6. Maiya BG. Photodynamic therapy: 2. Old and new photosensitizers. Resonance 2000; 5(6): 5–29. doi: 10.1007/BF02833852
  • 7. Jancula D, Drabkova M, Cerny J, Karaskova M, Korinkova R, Rakusan J et al. Algicidal activity of phthalocyanines screening of 31 compounds. The Bulletin of Environmental Contamination and Toxicology 2008; 23: 218–223. doi: 10.1002/tox.20324 295
  • 8. Bertoloni G, Rossi F, Valduga G, Jori G, Ali H et al. Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells. Microbios 1992. 71: 33–46. doi: 10.1111/j.1574-6968.1990.tb03814.x
  • 9. Jori G, Brown SB. Photosensitized inactivation of microorganisms. Photochemical and Photobiological Sciences 2004; 3 (5): 403-405. doi: 10.1039/b311904c 300
  • 10. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology 1997; 39 (1): 1-18. doi: 10.1016/s1011- 332 1344(96)07428-3
  • 11. Drabkova M, Maršálek B, Admiraal W. Photodynamic therapy against cyanobacteria. Environmental Toxicology 2007; 22 (1): 112-115. doi: 10.1002/tox.20240
  • 12. Kuznetsova NA, Gretsova NS, Derkacheva VM, Kaliya OL, Lukyanets EA. Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions. Journal of Porphyrins and Phthalocyanines 2003; 7 (03): 147-154. doi: 10.1142/S1088424603000203
  • 13. Jančula D, Maršálek B, Novotná Z, Černý J, Karásková M et al. In search of the main properties of phthalocyanines participating in toxicity against cyanobacteria. Chemosphere 2009; 77: 1520-1525. doi: 10.1016/j.chemosphere.2009.09.053
  • 14. Keren N, Gong H, Ohad I. Oscillations of reaction center II-D1 protein degradation in vivo induced by repetitive light flashes. Correlation between the level of RCII-QB- and protein degradation in low light. The Journal of Biological Chemistry 1995; 270 (2): 806-814. doi: 10.1074/jbc.270.2.806
  • 15. Sigler K, Chaloupka J, Brozmanova J, Stadler N, Höfer M. Oxidative stress in microorganisms I. Folia Microbiologica 1999; 44(6): 587-624. doi: 10.1007/BF02825650
  • 16. Mallick N, Mohn FH. Reactive oxygen species: response of algal cells. Plant Physiology 2000; 157 (2): 183-193. doi: 10.1016/S0176- 1617(00)80189-3
  • 17. Valentine JS, Wertz DL, Lyons TJ, Liou LL, Goto JJ et al. The dark side of dioxygen biochemistry. Current Opinion in Chemical Biology 1998; 2 (2): 253-262. doi: 10.1016/S1367-5931(98)80067-7
  • 18. Doğru A, Çakırlar H. Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes activity in winter rapeseed leaves under cold acclimation conditions. The Brazilian Journal of Botany 2020a; 43: 11-20. doi: 10.1007/s40415-020-00577-9
  • 19. Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology 1998; 49 (1): 249-279. doi: 10.1146/annurev.arplant.49.1.249
  • 20. Chew O, Whelan J, Millar AH. Molecular definition of the ascorbate-glutathione 255 cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. The Journal of Biological Chemistry 2003; 278 (47): 46869-46877 doi: 10.1074/jbc.M307525200
  • 21. Contour-Ansel D, Torres-Franklin ML, Cruz De Carvalho MH, D’Arcy-Lameta A, Zuily Fodil Y. Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Annals of Botany 2006; 98 (6): 1279-1287. doi: 10.1093/aob/mcl217
  • 22. Anjum NA, Umar S, Iqbal M. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants— implications for phytoremediation. Environmental Science and Pollution Research 2014. 21 (17): 10286-10293. doi: 10.1007/s11356- 244 014-2889-5
  • 23. Doğru A, Çakırlar H. Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology 2020b; 47 (3): 250-262. doi: 10.1071/FP19200
  • 24. Kandpal RP, Rao NA. Alterations in the biosynthesis of proteins and nucleic acids in finger millet (Eleucine coracana) seedlings during water stress and the effect of proline on protein biosynthesis. Plant Science 1985; 40 (2): 73-79. doi: http://dx.doi.org/10.1016/0168- 303 9452(85)90044-5 304
  • 25. Tunca H, Doğru A, Köçkar F, Önem B, Sevindik TO. Evaluation of Azadirachtin on Arthrospira plantensis Gomont growth parameters and antioxidant enzymes. Annales de Limnologie - International Journal of Limnology 2020; 56: 8. doi: 10.1051/limn/2020008 357
  • 26. Altınışık M. Biochemistry. Aydın Tıp Fakültesi 2000. https://www.mustafaaltinisik.org.uk/21-adsem-01.pdf (accessed 04.01.2021) (in Turkish).
  • 27. Doğru A. Antioxidant responses of barley (Hordeum vulgare L.) genotypes to lead toxicity. Biologia 2020; 75: 1265-1272. doi: 10.2478/ s11756-020-00516-9
  • 28. Aiba S, Ogawa T. Assessment of growth yield of a blue—green alga, Spirulina platensis, in axenic and continuous culture. Microbiology 1977; 102 (1): 179-182. doi: 10.1099/00221287-102-1-179 239
  • 29. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology Society 1979; 111. doi: 10.1099/00221287-111-1-1
  • 30. Günsel A, Bilgiçli AT, Barut B, Taslimi P, Özel A, Gülçin İ et al. Synthesis of water-soluble tetra-substituted phthalocyanines: Investigation of DNA cleavage, cytotoxic effects and metabolic enzymes inhibition. Journal of Molecular Structure 2020; 1214-128210. doi: 10.1016/j. molstruc.2020.128210
  • 31. Mackinney G. Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry 1941; 140 (2): 315-322. 317 32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976; 72 (1-2): 248-254. doi: 10.1006/abio.1976.9999
  • 33. Beyer Jr WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry 1987; 161 (2): 559-566. doi: 250 10.1016/0003-2697(87)90489-1
  • 34. Önem B, Doğru A, Ongun Sevindik T, Tunca H. Preliminary study on the effects of heavy metals on the growth and some antioxidant enzymes in Arthrospira platensis-M2 strain. Phycological Research 2018; 66 (1): 23-30. doi: 10.1111/pre.12202
  • 35. Wang SY, Jiao HJ, Faust M. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple. Physiologia Plantarum 1991; 82(2): 231- 236. doi: 10.1111/j.1399-3054.1991.tb00086.x
  • 36. Sgherri CLM, Loggini B, Puliga S, Navari-Izzo F. Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 1994; 35 (3): 561-565. doi: 10.1016/S0031-9422(00)90561-2
  • 37. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 1968; 125(1): 189-198. doi: 10.1016/0003-9861(68)90654-1
  • 38. Weimberg R. Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum 1987; 70 (3): 381-388. doi: 10.1111/j.1399-3054.1987.tb02832.x
  • 39. Morelli E, Cioni P, Posarelli M, Gabellieri E. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquatic Toxicology 2012; 122: 153-162. doi: 10.1016/j.aquatox.2012.06.012
  • 40. Günsel A, Tunca H, Bilgiçli AT, Doğru A, Yaraşir MN et al. The effects of a water-soluble alpha tetra-substituted zinc phthalocyanine derivative on Arthrospira platensis-M2 strain. Journal of Porphyrine and Phthalocyanine 2018; 22 (08): 686-692. doi: 10.1142/S1088424618500426 289
  • 41.Tekbaba A, Özpınar SÇ, Tunca H, Sevindik TO, Doğru A et al. Synthesis, characterization and investigation of algal oxidative effects of watersoluble copper phthalocyanine containing sulfonate groups. JBIC Journal of Biological Inorganic Chemistry, 2021; 26 (2): 355-365. doi: 10.1007/s00775-021-01860-0
  • 42. Fang B, Shi J, Qin L, Feng M, Cheng D et al. Toxicity evaluation of 4,4’-di-CDPS and 4,4’-di-CDE on green algae Scenedesmus obliquus: Growth inhibition, change in pigment content, and oxidative stress. Environmental Science Pollution Research 2018; 25: 15630–15640. doi: 10.1007/s11356-018-1749-0
  • 43. Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology 1999; 50: 601–639. doi: 10.1146/annurev.arplant.50.1.601
  • 44. Ding T, Lin L, Yang B, Yang M, Li J et al. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresource Technology 2017; 238: 164-173. doi: 10.1016/j.biortech.2017.04.018
  • 45. Melegari SP, Perreault F, Moukha S, Popovic R, Creppy EE et al. Induction to oxidative stress by saxitoxin investigated through lipid peroxidation in Neuro 2A cells and alga. Chemosphere 2012; 89: 38-43. doi: 10.1016/j.chemosphere.2012.04.009
  • 46. Radić S, Domijan AM, Ljubimir KG, Maldini K, Ivešić M et al. Toxicity of nanosilver and fumonisin B1 and their interactions on duckweed (Lemna minor L.). Chemosphere 2019; 229: 86-93.
APA Tunca H, Çağatay Özpınar S, Tekbaba A, ONGUN SEVİNDİK T, Dogru A, Günsel A, BİLGİÇLİ A, Yaraşır M (2022). Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. , 367 - 377. 10.3906/kim-2107-29
Chicago Tunca Hatice,Çağatay Özpınar Sena çağatay özpınar,Tekbaba Aysegul,ONGUN SEVİNDİK Tuğba,Dogru Ali,Günsel Armağan,BİLGİÇLİ Ahmet Turgut,Yaraşır Meryem Nilüfer Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. (2022): 367 - 377. 10.3906/kim-2107-29
MLA Tunca Hatice,Çağatay Özpınar Sena çağatay özpınar,Tekbaba Aysegul,ONGUN SEVİNDİK Tuğba,Dogru Ali,Günsel Armağan,BİLGİÇLİ Ahmet Turgut,Yaraşır Meryem Nilüfer Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. , 2022, ss.367 - 377. 10.3906/kim-2107-29
AMA Tunca H,Çağatay Özpınar S,Tekbaba A,ONGUN SEVİNDİK T,Dogru A,Günsel A,BİLGİÇLİ A,Yaraşır M Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. . 2022; 367 - 377. 10.3906/kim-2107-29
Vancouver Tunca H,Çağatay Özpınar S,Tekbaba A,ONGUN SEVİNDİK T,Dogru A,Günsel A,BİLGİÇLİ A,Yaraşır M Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. . 2022; 367 - 377. 10.3906/kim-2107-29
IEEE Tunca H,Çağatay Özpınar S,Tekbaba A,ONGUN SEVİNDİK T,Dogru A,Günsel A,BİLGİÇLİ A,Yaraşır M "Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate." , ss.367 - 377, 2022. 10.3906/kim-2107-29
ISNAD Tunca, Hatice vd. "Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate". (2022), 367-377. https://doi.org/10.3906/kim-2107-29
APA Tunca H, Çağatay Özpınar S, Tekbaba A, ONGUN SEVİNDİK T, Dogru A, Günsel A, BİLGİÇLİ A, Yaraşır M (2022). Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. Turkish Journal of Chemistry, 46(2), 367 - 377. 10.3906/kim-2107-29
Chicago Tunca Hatice,Çağatay Özpınar Sena çağatay özpınar,Tekbaba Aysegul,ONGUN SEVİNDİK Tuğba,Dogru Ali,Günsel Armağan,BİLGİÇLİ Ahmet Turgut,Yaraşır Meryem Nilüfer Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. Turkish Journal of Chemistry 46, no.2 (2022): 367 - 377. 10.3906/kim-2107-29
MLA Tunca Hatice,Çağatay Özpınar Sena çağatay özpınar,Tekbaba Aysegul,ONGUN SEVİNDİK Tuğba,Dogru Ali,Günsel Armağan,BİLGİÇLİ Ahmet Turgut,Yaraşır Meryem Nilüfer Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. Turkish Journal of Chemistry, vol.46, no.2, 2022, ss.367 - 377. 10.3906/kim-2107-29
AMA Tunca H,Çağatay Özpınar S,Tekbaba A,ONGUN SEVİNDİK T,Dogru A,Günsel A,BİLGİÇLİ A,Yaraşır M Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. Turkish Journal of Chemistry. 2022; 46(2): 367 - 377. 10.3906/kim-2107-29
Vancouver Tunca H,Çağatay Özpınar S,Tekbaba A,ONGUN SEVİNDİK T,Dogru A,Günsel A,BİLGİÇLİ A,Yaraşır M Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate. Turkish Journal of Chemistry. 2022; 46(2): 367 - 377. 10.3906/kim-2107-29
IEEE Tunca H,Çağatay Özpınar S,Tekbaba A,ONGUN SEVİNDİK T,Dogru A,Günsel A,BİLGİÇLİ A,Yaraşır M "Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate." Turkish Journal of Chemistry, 46, ss.367 - 377, 2022. 10.3906/kim-2107-29
ISNAD Tunca, Hatice vd. "Algaecidal and oxidative effects of metal-free phthalocyanine beta tetra-substituted with sodium 2-mercaptoethanesulfonate". Turkish Journal of Chemistry 46/2 (2022), 367-377. https://doi.org/10.3906/kim-2107-29