4 3

Proje Grubu: MAG Sayfa Sayısı: 349 Proje No: 109M464 Proje Bitiş Tarihi: 11.01.2012 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • KUHLMANN, F. J., Deposition of SnO2 thin films using reactive RF sputtering. Master of Science Thesis, University of Texas, USA, 2004.
  • IL-SEOK, K., Synthsesis, structure and properties of electrochemically active nanocomposites. Philosophy of Doctorate Thesis, Carnegie Mellon University, USA, 2003.
  • SHIN, H.C., LIU, M., Three dimensional Porous Copper-Tin Alloy Electrodes for Lithium Ion Batteries. Adv Func Mater, 2005; 15: 582-586.
  • COURTNEY, I.A., DAHN, J.R., Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. J. Electrochem. Soc. 1997;144:2045-2052.
  • OU, M., DUNLOP, R.A., DAHN, J.R., Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries: I. The Sn2Fe-C System, J. Electrochem. Soc. 1999;146:405-413.
  • MCKINNON, W.R., Solid state electrochemistry. Cambridge University Press, 1995; pg. 322.
  • HAMBITZER, G., PINKWART, C., SCHILLER, C., Handbook of battery materials, John Wiley and Sons Press, pg. 32, 1999.
  • YIXUAN, W., Lithium ion batteries: Solid electrolyte interphase. Imperial College Press, UK, 2004; pg. 66. [
  • ARMAND, M.B., Materials for Advanced Batteries. NATO Conference Series VI: Materials Science, 1989; pg. 145.
  • PETER, B.G., BRUNO, S., JEAN-MARIE, T., Nanomaterials for rechargable lithium batteries. Angewandte Chemie, 2008; 47:2-19.
  • HIROAKI, U., EIJI, H., ITARU, H., HOASHEN, Z., HIROAKI, I., A nanoscale meshed electrode of single crystalline SnO for lithium-ion batteries. Electrochem. Commun., 2008; 10:52-55.
  • QI-HUI, W., JIE, S., JUNYONG, K., QUAN-FENG, D., SUN-TAO, W., SHI-GANG, S., Nano-particle thin films of tin oxides. Mater. Lett., 2007; 61:3679-3684.
  • GUBBINS, M.A., CASEY, V., NEWCOMB, S.B., Nanostructural characterization of SnO2 thin films prepared by reactive RF magnetron sputtering of tin. Thin Solid Films, 2002; 405:270-275.
  • DEY, A.N., Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc., 1971; 118:1547-1550.
  • JOW, T.R., LIANG, C.C., Lithium-aluminum electrodes at ambient temperatures. J. Electrochem. Soc., 1982; 129:1429, 1982.
  • BARANSKI, A.S., FAWCETT, W.R., The formation of lithium-aluminum alloys at an aluminum electrode in propylene carbonate. J. Electrochem. Soc., 1982; 129:901-904.
  • ANANI, A., BAKER, S. C., HUGGINS, R. A., Kinetic and thermodynamic parameters of several binary lithium alloy negative electrode materials at ambient temperature. J. Electrochem. Soc., 1988; 134:3098, 1988.
  • ANANI, A., BAKER, S. C., HUGGINS, R. A., Investigation of a ternary lithium alloy mixed-conducting matrix electrode at ambient temperature. J. Electrochem. Soc., 1988; 135:2103-2106.
  • BESENHARD, J. O., KOMENDA, P., PAXINES, A., WUDY, E., JOSOWICS, M., Binary and ternary Li-alloys as anode materials in rechargeable organic electrolyte Li-batteries. Solid State Ionics, 1986; 18&19 (2):823- 827.
  • SANCHEZ, P., BELIN, C., CREPY, C., DE GUIBERT, A., Electrochemical studies of lithium-boron alloys in non-aqueous media-comparison with pure lithium. J. Appl. Electrochem., 1989; 19 (3):421-428.
  • YAZAMI, R., TOUZIN, P., A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources, 1983; 9:365-371.
  • MURPHY, D. W., CHRISTIAN, P. A., Solid state electrodes for high energy batteries. Science, 1979; 205:651-656.
  • BROADHEAD, J., DISALVO, F.J., TRUMBORE, A., Non-aqueous battery using chalcogenide electrode. US Patent No: 3864167, American Patent Office, 1996.
  • MIZUSHIMA, K., JONES, P.C., WISEMAN, P.J., GOODENOUGH, J.B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull., 1980; 15:783-789.
  • THACKERAY, M.M., DAVID, W.I.F., BRUCE, P.G., Lithium insertion into manganese spinels. Mater. Res. Bull., 1983; 18:461-462.
  • MURPHY, D.W., CHRISTIAN, P.A., DISALVO, F.J., CARIDES, J.N., Vanadium oxide cathode materials for secondary lithium cells. J. Power Sources, 1979; 126:497-499.
  • LAZZARI, M., SCROSATI, B., A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Power Sources,1980; 127:773-774.
  • TAMURA, H., KATAYAMA. N., NAGAYAMA, M., Characterization of the adsorption of Co2+, Ni2+, Zn2+ and Cu2+ ions on the MnO2 sample. J. Prog. in Batt. & Batt. Mater., 1990; 9:188-195.
  • ZHANG, R., LEE, J.Y., LIU, Z.L., Pechini process-derived tin oxide and tin oxide–graphite composites for lithium-ion batteries. Journal of Power Sources, 2002;112:596-605.
  • WOHLMUTHA, W., ADESIDA, I., Properties of R.F. magnetron sputtered cadmium–tin–oxide and indium–tin–oxide thin films. Thin Solid Films, 2005;423:223-231.
  • MOON, Y.K., KIM, W.S., KIM, K.T., SHIN, S.Y., PARK, J.W., Characteristics of tin oxide-based thin film transistors prepared by DC magnetron sputtering. J Nanosci Nanotechnol, 2012;12:3341–3345.
  • SHIN, J.H., SHIN, S.H., PARK, J.I., KIM, H.H., Properties of dc magnetron sputtered indium tin oxide films on polymeric substrates at room temperature, J. Appl. Phys. 2001;89:5199-5204.
  • PRESLEY, R.E., MUNSEE, C.L., PARK, C-H, HONG, D., WAGER J.F., KESZLER, D.A., Tin oxide transparent thin-film transistors, J. Phys. D: Appl. Phys. 2004;37:2810–2813.
  • DAN, L., LILI, W., HONGCHAO, J., YU, Z., JİNGQUAN, Z., WEI, L., LIANGHUAN, F., Preparation and Properties of SnO2 Film Deposited by Magnetron Sputtering, International Journal of Photoenergy, 2012;1:17-23.
  • SPENCE, W., The uv absorption edge of tin oxide thin films, Journal of Applied Physics, 1967;38:3767–3770.
  • JAIN, P., SINGH, S., SIDDQUI, A.M., SRIVASTAVA, A. K., Tin Oxide Thin Films Prepared by Thermal Evaporation Technique Under Different Vacuum Conditions. Adv Sci Eng Med, 2012;4:230-236
  • YAO F., FENG, L., Properties of SnO2 polycrystalline thin films prepared by magnetic reactive sputtering, Semiconductor Optoelectronics, 2007;28;367–369.
  • SUNITA, M., GHANSHYAM, C., NATHAI, R., SATINDER, S., BAJPAI, R.P., BEDI, R.K., Alcohol sensing of tin oxide thin film prepared by sol–gel process, Bull. Mater. Sci., 2002;25:231–234.
  • AMANULLAH, F.M., SALEH A.M., AL-DHAFIRI A.M., AL-SHIBANI, K.M., Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors, Materials Chemistry and Physics, 1999;59:247–253.
  • YAMAZAKI, T., MIZUTANI, U., IWAMA, Y., Electrical properties of SnO2 polycrystalline thin films and single crystals exposed to O2 and H2-Gases. Japanese Journal of Applied Physics, 1983;22: 454–459.
  • R.A. HUGGINS, in: J.O. BESENHARD (Ed.), Handbook of Battery Materials, Part III, VCH, Weinheim, 1999 (Bölüm 4).
  • READ, J., FOSTER, D., WOLFENSTINE, J., BEHL, W., SnO2-carbon composites for lithium-ion battery anodes. J. Power Sources,2001;96:277-281.
  • COURTNEY, I.A., DAHN, J.R., Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO6 Glass, J. Electrochem. Soc., 1997;144:2943-2948.
  • MAO, O., TURNERB, R.L., COURTNEYA, I.A., FREDERICKSEN, B.D., BUCKETT, M.I., KRAUSE, L. J., DAHN, J.R., Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries, J. Electrochem. Soc., 1999;2:3-5.
  • COURTNEYA, I.A., TSE, J.S., MAO, O., HAFNER, J., DAHN, J.R., Ab initio calculation of the lithium-tin voltage profile, Physical Review B, 1998;58:15583-15588.
  • LIA, N., MARTINA, C.R., SCROSATI, B., A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode, J. Electrochem. Soc., 2000;3:316-318.
  • KEBAO, W., SAM F.Y.L., ZHIQIANG, G., KOK S.S., Tin-based oxide anode for lithium-ion batteries with low irreversible capacity, Journal of Power Sources, 1998;75:9-12.
  • MOHAMEDI, M., SEO-JAE L., TAKAHASHI, D., NISHIZAWA, M., ITOH, T., UCHIDA, I., Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries, Electrochimca Acta, 2001:46; 1161-1168.
  • HAN, S., JANG, B., KIM, T., OH, S.M., HYEON, T., Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes, Adv Func Mater, 2005;15:1845-1850.
  • WAKIHARA, M., Recent Developments in lithium ion batteries. Mater. Sci. Eng., 2001; R33:109-134.
  • COURTNEY, I.A., MCKINNON, W.R., DAHN, J.R., On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium, J. Electrochem. Soc., 1999;146:59-68.
  • DEVIN, A. M., Plasma-enhanced atomic layer deposition zinc oxide for multifunctional thin film electronics, The Pennsylvania State University, August 2010; 29-35.
  • WEI-LUN, T., B.S., Processing, structure, and tribological property interrelationships in sputtered nanocrystalline ZnO coatings, University Of North Texas, Master Of Science, 2009;10-13.
  • TING-FANG, Y., ZnO thin film deposition, characterization, and its applications, State University of New York at Buffalo, Doctor of Philosophy, Department of Electrical Engineering, 2009;1-20.
  • GUR, E., Çinko oksit yarı iletkeninin yapısal, optik ve elektriksel karakterizasyon teknikleriyle incelenmesi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 2007, 4-50.
  • HUANG, N., ZHU, M.W., GAO, L.J., GONG, J., SUN C., JIANG, X., A template-free sol–gel technique for controlled growth of ZnO nanorod arrays, Applied Surface Science, (2011); 257:6026–6033.
  • PAIK-KYUN, S., YOICHIRO, A., TOMOAKI, I., KENJI, E., Application of pulsed laser deposited zinc oxide films to thin film transistor device, Thin Solid Films, (2008); 516:3767–3771.
  • AURANGZEB, K., MARTIN, K.E., Large-scale fabrication of metallic Zn nanowires by thermal evaporation, Physica, (2006); E 33:88–91.
  • NG, K.Y., AMOL, M., CHAN, Y.F., NG, A.C.M., DJURIŠIĆ, A.B., NGAN, A.H.W., Highly facetted metallic zinc nanocrystals fabricated by thermal evaporation, Materials Letters, (2006); 60:2423–2427.
  • GORDILLO G., CALDERON, C., Properties of ZnO thin films preparedby reactive evaporation, Solar Energy Materials & Solar Cells, 2001;69:251-260.
  • WEIWEI, W., GENGMIN, Z., LIGANG, Y., XIN, B., ZHAOXIANG, Z., XINGYU, Z., Field emission properties of zinc oxide nanowires fabricated by thermal evaporation, Physica, 2007;E36:86–91.
  • CHEN, J.J., GAO, Y., ZENG, F., LI, D.M., PAN, F., Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films, Applied Surface Science, 2004;223:318–329.
  • ABDULGAFOUR, H.I., HASSAN, Z., AL-HARDAN, N., YAM, F.K., Growth of zinc oxide nano flowers by thermal evaporation method, Physica, 2010;B405:2570–2572.
  • FEI, L., ZHEN, L., FUJIANG, J., Fabrication and characterization of ZnO micro and nanostructures prepared by thermal evaporation, Physica B, 2008;403:664–669.
  • YUVARAJ, D., NARASIMHA, R.K., KESHAB, B., Synthesis of platestacks and microtowers of zinc by thermal evaporation, Solid State Communications, 2009;149:349-351.
  • ARIËL DE, G., JOOP VAN, D., PAUL, P., TON VAN MOL, B., KAREL, S., FRANK, G., ANDO, K., Development of atmospheric pressure CVD processes for high quality transparent conductive oxides, Energy Procedia, 2010;2:41–48.
  • LIA, Z.W., GAOA, W., ROGER, J.R. Zinc oxide films by thermal oxidation of zinc thin films, Surface & Coatings Technology, 2005;198:319–323.
  • YOLANDA, Y.V., DA-REN, L., PEI, T.C., Pulsed laser deposition of zinc oxide, Thin Solid Films, 2006;51:366 – 369.
  • TRICOT, S., NISTOR, M., MİLLON, E., BOULMER-LEBORGNE, C., MANDACHE, N.B., PERRIÈRE, J., SEILER, W., Epitaxial ZnO thin films grown by pulsed electron beam deposition, Surface Science, 2010;604:2024– 2030.
  • XINZE, L., LIN, X., BINGBING, X., FENGYAN, L., Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dyesensitized solar cell application, Applied Surface Science, 2011;257:6908–6911.
  • ILICAN, S., CAGLAR, Y., CAGLAR, M., Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method. Journal of Optoelectronics and Advanced Materials, 2008;10:2578-2583.
  • BRECKENRIDGE, R.G., HOSLER, W.R., Electrical Properties of Titanium Dioxide Semiconductors, Phys. Rev. 1983;91:793–802.
  • GLASSFORD, K.M., CHELIKOWSKY, J.R., Structural and electronic properties of titanium dioxide, Phys. Rev. 1992;B46:1284–1298.
  • BENNETT, J.M., PELLETIER, E., ALBRAND, G., BORGOGNO, J.P., LAZARIDES, B., CARNIGLIA, C.K., SCHMELL, R.A., ALLEN, T.H., HART, T.T., GUENTHER, K.H., SAXER, A., Comparison of the properties of titanium dioxide films prepared by various techniques. Applied Optics, 1989;28:3303- 3317.
  • KAO, C.C., TSAI, S.C., BAHL, M.K., CHUNG, Y.W., Electronic properties, structure and temperature-dependent composition of nickel deposited on rutile titanium dioxide (110) surfaces, Surface Science, 1980;95:1–14.
  • CARUSO1, R.A., SCHATTKA1, J.H., GREINER, A., Titanium Dioxide Tubes from Sol–Gel Coating of Electrospun Polymer Fibers, Adv Mater, 2001;13:1577–1579.
  • HOYER, P., Formation of a Titanium Dioxide Nanotube Array, Langmuir, 1996;12:1411-1413.
  • KUZNETSOV, V.N., SERPONE, N., Visible light absorption by various titanium dioxide specimens. J Phys Chem B, 2006; 110:25203-25209.
  • DIEBOLD, U., , M., The surface science of titanium dioxide, Surf Sci Rep, 2003;48:53-229.
  • CHEN, G.Z., FRAY, D.J., FARTHING, T.W., Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 200;407:361-364.
  • TİKE, B., Titanyum dioksit süspansiyon ve ince filmler ile bakteriyel giderim. Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Bölümü, Yüksek Lisans Tezi, 2007.
  • SAKTHIVEL, S., KISCH, H., Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Ange Che Int, 2003;42:4908-4911.
  • WARD, M.D, WHITE, J.R., BARD, A.J., Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologenacetate system, J Am Chem Soc, 1983;105:27–31.
  • NAZEERUDDIN, M.K., PECHY, P., GRATZEL, M., Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex, Chem. Commun., 1997;1997):1705–1706
  • MILLS, A., LEHUNTE, S., An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem., 1997;108:1–35.
  • LINSEBIGLER, A.L., LU, G.Q., YATES, J.T., Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results, Chem Rev, 1995;95:735- 739.
  • ZHANG, Y.X., LI, G.H., JIN, Y.X., ZHANG, J., ZHANG, D.L., Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett., 2002; 365:300-304.
  • Stewart, G., Fox, M.A., The effect of dark recovery time on the photoefficiency of hetrogeneous photocatalysis by TiO2 suspended in nonaqueous media, Res. Chem. Intermediates, 1995;21:933-939.
  • ZHANG, Q.H., GAO, L.A., SUN, J., ZHENG, S., Preparation of long TiO2 nanotubes from ultrafine rutile nanocrystals. Chem. Lett., 2002; 31:226-231.
  • SOPYAN, I., WATANABE, M., MARASAWA, S., HASHIMOTO, K., FUJISHIMA, A., An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, J Photochem Photobiol A: Chem., 1996;98:79–86.
  • YANG, J., JIN, Z., WANG, X., LI, W., ZHANG, J., ZHANG, S., GUO, X., ZHANG, Z., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. J. Chem. Soc. Dalton, 2003; 38:3898-3902.
  • ARMSTRONG, A.R., ARMSTRONG, G., CANALES, J., BRUCE, P.G., TiO2-B, nanowires. Ange. Chem. Int. Edit., 2004; 43:2286-2288.
  • MARCHAND, R., BROHAN, L. TOURNOUX, M., TiO2(B) A new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull., 1980; 15:1129-1133.
  • MARCHAND, R., BROHAN, L. TOURNOUX, M., Layered K2Ti4O9 and the open metastable TiO2(B) structure. Prog. Solid State Ch., 1986; 17:33-52.
  • FEIST, T. P., DAVIES, P. K., The soft chemical synthesis of TiO2 (B) from layered titanates, J. Solid State Ch., 1992; 101:275-295.
  • CHANGKEUN, B., Carbon-Based Materials for Energy Storage, Doctor of Philosophy, Illinois Institute of Technology, Chicago, 2006.
  • CHARAN, M., Carbon Nanotubes: Synthesis, Properties and Applications In Modern Electronic Devices, Doctor of Philosophy, University of Delaware, 2008.
  • SUMIO, L., Helical Microtubules of Graphitic Carbon, Nature, 1991;354:56- 58.
  • XIUYING, W., BAIYING, X., XINGFU, Z., JIESHENG, C., SHILUN, QI., JIXUE, L., Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures. Journal of Solid State Chemistry, 2008;181:822–827.
  • O’CONNELL M.J., Carbon Nanotubes: Properties and Applications, Taylor & Francis Group, 2006.
  • GULDI, D. M., MARTIN, N., Carbon Nanotubes and Related Structures, WILEY-VCH Verlag GmbH & Co. KGaA, 2010
  • PITALSKY, Z., AGGELOPOULOS, C., TSOUKLER, G., TSAKIROGLOU, C., PARTHENIOS, J., GEORGA, S., KRONTIRAS, C., TASIS, D., PAPAGELIS, K., GALIOTIS, C., The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films; Materials Science and Engineering B, 2009:165;135–138.
  • ANNE, C. D., THOMAS, G., KIM, M. J., JEFFREY, L. A., PHILIP, A.P., MICHAEL J. H., A Simple and Complete Purification of Single-Walled Carbon Nanotube Materials, Advanced Materials, 1999; 11: 16-25.
  • CHEN, X.H., CHEN, C.S., CHEN, Q., CHENG, F.Q., ZHANG, G., CHEN, Z.Z., Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD, Materials Letters, 2002; 57:734-738.
  • DATSYUK, V., KALYVA, M., PAPAGELIS, K., PARTHENIOS, J., TASIS, D., SIOKOU, A., KALLITSIS, I., GALIOTIS, C., Chemical oxidation of multiwalled carbon nanotubes, Carbon, 2008; 46:833-840.
  • LIU, L., QIN, Y., GUO, Z-X., ZHU D., Reduction of solubilized multiwalled carbon nanotubes, Carbon, 2003; 41:331-335.
  • GOYANES, S., RUBIOLO, G.R., SALAZAR, A., JIMENO, A., CORCUERA, M.A., MONDRAGON, I., Carboxylation treatment of multiwalled carbon nanotubes monitored byinfrared and ultraviolet spectroscopies and scanning probe microscopy, Diamond & RelatedMaterials, 2007; 16:412-417.
  • STOBINSKI, L., LESIAK, B., KOVER, L., TOTH, J., BINIAK, S., TRYKOWSKI, G., JUDEK, J.,Multiwall carbon nanotubes purification and oxidation by nitric acid studied bythe FTIR and electron spectroscopy methods, Journal of Alloys and Compounds, 2010; 50:177-184.
  • DRESSELHAUS, M.S., DRESSELHAUS, G., SAITO, R., JORIO, A., Raman spectroscopy of carbon nanotubes, Physics Reports, 2005; 409:47-99.
  • JORIO, A., SAITO, R., HERTEL, T., WEISMAN, R.B., DRESSELHAUS, G. AND DRESSELHAUS, M.S., Carbon Nanotube Photophysics, MRS Bulletin, 2004; 29:276-280.
  • REICH, S., THOMSEN, C., MAULTZSCH, J., Carbon Nanotubes Basic Concepts and Physical Properties, Chem Phys Chem, 2004; 5:1913-1915.
  • DRESSELHAUS, M.S., DRESSELHAUS, G., JORIO, A., SOUZA FILHO, A.G., SAITO, R., Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 2002; 40:2043-2061.
  • CHIPARA, D.M., CHIPARA A.C., AND CHIPARA, M., Raman spectroscopy of carbonaceous materials: a concise review, Spectroscopy, 2011; 26:2-7.
  • OSORIO, A.G., SILVEIRA, I.C.L., BUENO, V.L., BERGMANN, C.P., H2SO4/HNO3/HCl Functionalization and its effect on dispersion of carbon nanotubes in aqueous media, Applied Surface Science, 2008; 255:2485-2489.
  • MATTOX, D.M., Handbook of physcial vapor deposition (PVD) processing, Noyes Publication, United States, 1998.
  • JAIN, P., SINGH, S., SIDDQUI, A. Z., SRIVASTAVA, A. K., Tin Oxide Thin Films Prepared by Thermal Evaporation Technique Under Different Vacuum Conditions, Advanced Science, Engineering and Medicine 2012; 4:230-236.
  • PARK, S., HONG, C., KANG, J., CHO, N, LEE, C., Growth of SnO2 nanowires by thermal evaporation on Au-coated Si substrates, Current Applied Physics 2009; 9:230-233.
  • KIM, H. W., SHIM, S. H., Synthesis and characteristics of SnO2 needleshaped nanostructures, Journal of Alloys and Compounds 2006; 426:286-289
  • KUMAR, R., KHANNA, A., SASTRY, V.S., Interaction of reducing gases with tin oxide films prepared by reactive evaporation techniques, Vacuum 2012; 86:1380-1386.
  • LI, Y., PENG, R., XIU, X., ZHENG, X., ZHANG, X., ZHAI, G., Growth of SnO2 nanoparticles via thermal evaporation method, Superlattices and Microstructures 2011; 50:511-516.
  • KIM, K., LEE, D., MAENG, S., Synthesis of novel pure SnO nanostructures by thermal evaporation, Materials Letters 2012; 86:119-121.
  • KIM, Y., YOON, Y., SHIN, D., Fabrication of Sn/SnO2 composite powder for anode of lithium ion battery by aerosol flame deposition, J. Analytical & Applied Pyrol. 2009; 85:557-560.
  • COURTEL, F. M., BARANOVA, E. A., ABU-LEBDEH, Y., DAVIDSON, I. J., In situ polyol-assisted synthesis of nano-SnO2/carbon composite materials as anodes for lithium-ion batteries, Journal of Power Sources 2010; 95:2355-2361.
  • FU, Y., MA, R., SHU, Y., CAO, Z., MA, X., Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications, Mater. Let. 2009; 63:1946-1948.
  • YIM, C., BARANOVA, E.A., COURTEL, F.M., ABU-LEBDEH, Y., DAVIDSON, I.J., Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries, Journal of Power Sources 2011; 196:9731-9736.
  • BELLIARD, F., CONNOR, P.A., IRVINE, J.T.S., Novel Tin Oxide based anodes for Li-Ion Batteries, Solid State Ionics 2000; 135:163-167.
  • LEE, J.H., KONG, B., YANG, S.B, JUNG H., Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes, Journal of Power Sources 2009; 194:520-525.
  • AHN, D., XIAO, X., LI, Y., SACHDEV, A.K., PARK ,H.W., YU, A., CHEN, Z., Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery, Journal of Power Sources 2012; 212:66-72.
  • SIVASHANMUGAM, A., KUMAR, T.P., RENGANATHAN, N.G., GOPUKUMAR, S., WOHLFAHRT-MEHRENS, M., GARCHE, J., Electrochemical behavior of Sn/SnO2 mixtures for use as anode in lithium rechargeable batteries, J. Power Sources 2005; 144:197-203.
  • FU, Y., MA, R., SHU, Y., CAO, Z., MA, X., Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications, Mater. Let. 2009; 63:1946-1948.
  • SHAFIEI, M., ALPAS, A.T., Electrochemical performance of a tin-coated carbon fibre electrode for rechargeable lithium-ion batteries, J. Power Sources 2011; 196:7771-7778.
  • TILBROOK, M.T., MOON, R.J., HOFFMAN, M., Crack propagation in graded composites, Composites Science and Technology 2005; 65:201-220.
  • HAN, W., ZETTL, A., Coating single-walled carbon nanotubes with tin oxide, Nano Letters 2003; 3:681-683.
  • ANDERS, H., MICHAEL, G., Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 1995; 95:49-68.
  • TIAN, Z. R., TONG, W., WANG, J., Y., DUAN, N. G., KRISHNAN, V. V., SUIB, S. L., Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science, 1997; 276:926-931.
  • ZHANG, Y. X., LI, G. H., JİN, Y. X., ZHANG, J., ZHANG, D. L., Hydrothermal synthesis and photoluminescence of TiO2 nanowires, Chem. Phys. Lett., 2002; 365:300-304.
  • FENG, L., MING, Z., JİNG, F., GANG, C., ZHIJUN, W., YUGUANG, M., SHIYONG, L., JIACONG, S., Red electrophosphorescence devices based on rhenium complexes. Appl. Phys. Lett., 2003; 83:365-368.
  • SREEKUMAR, T.V., LIU, T., KUMAR, S., ERICSON, L.M., HAUGE, R.H., SMALLEY, R.E., Single-wall carbon nanotube films. Chem. Mater., 2003;15(1):175–178.
  • BERHAN, L., YI, Y.B., SASTRY, A.M., MUNOZ, E., SELVIDGE, M., BAUGHMAN, R., Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials. J. Appl. Phys., 2004;95(8):4335–4345.
  • SKAKALOVA, V, KAISER, A.B., DETTLAFF-WEGLIKOWSKA,U., HRNCARIKOVA, K., ROTH, S., Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J. Phys. Chem., B 2005;109(15):7174–7181.
  • DETTLAFF-WEGLIKOWSKA, U., SKAKALOVA, V., GRAUPNER, R., JHANG, S.H., KIM, B.H., LEE, H.J., Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J. Am. Chem. Soc. 2005;127(14):5125–5131.
  • TEAGUE, L.C., BANERJEE, S., WONG, S.S., RICHTER, C.A., VARUGHESE, B., BATTEAS, J.D., Effects of ozonolysis and subsequent growth of quantum dots on the electrical properties of freestanding single-walled carbon nanotube films. Chem. Phys. Lett., 2007;442(4–6):354–359.
  • GONG, T., ZHANG, Y., LIU, W.J., WEI, J.Q., LI, C.G., WANG, K.L., Connection of macro-sized double-walled carbon nanotube strands by bandaging with double-walled carbon nanotube films. Carbon, 45(11), 2235–2240, 2007.
  • WEI, J.Q., ZHU, H.W., LI, Y.H., CHEN, B., JIA, Y., WANG, K.L., Ultrathin single-layered membranes from double-walled carbon nanotubes. Adv. Mater., 18 (13), 1695–1700 2006.
  • ZHANG, N., XIE, J., VARADAN, V.K., Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct., 2002;11(6):962–965.
  • ALAF, M., GULER, M.O., GULTEKIN, D., UYSAL, M., ALP, A., AKBULUT, H., Effect of oxygen partial pressure on the microstructural and physical properties on nanocrystalline tin oxide films grown by plasma oxidation after thermal deposition from pure Sn targets. Vacuum, 2008;83 (2):292-301.
  • GILBERT, B., ZHANG, H.Z., HUANG, F., FINNEGAN, M.P., WAYCHUNAS, G.A., BANFIELD, J.F., Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem. Trans., 2003;4:20-24.
  • ZHANG, H., BANFIELD, J.F., New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am. Miner., 1999;84:528-535.
  • ZHANG, H., BANFIELD, J.F., Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates:  insights from TiO2. J. Phys. Chem. B, 2000;104(15):3481-3487.
  • PATEL, K. J., DESAI, M. S., PANCHAL, C. J., Properties of RF magnetron sputtered indium tin oxide thin films on externally unheated glass substrate, J Mater Sci: Mater Electron, 2011; 22:959–965.
  • DE, A., AND RAY, S., A study of the structural and electronic properties of magnetron sputtered tin oxide films, J. Phys. D: Appl. Phys., 1991; 24:719-726.
  • HUH, M.S., YANG, B.S., LEE, J., HEO, J., HAN, S.JIN., YOON, K., YANG S.H., HWANG, C.S., KIM, H.J., Improved electrical properties of tinoxide films by using ultralow-pressure sputtering process, Thin Solid Films, 2009;518:1170-1173.
  • SUZUKI, K., MIZUHASHI, M., Structural, electrical and optical properties of r.f. magnetron-sputtered SnO2:Sb film, Thin Solid Films, 1982;97(2):119-127.
  • KILIC, C., ZUNGER, A., Origins of coexistence of conductivity and transparency in SnO2, Physical Review Letters, 2002; 88(9):095501-1 - 095501-4.
  • TANG, I.T., WANG, Y.C., HWANG, W.C., Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions, Journal of Crystal Growth, 2003;252(1-3):190- 198.
  • LEE, S.U., BOO, J.H., HONG, B., Structural, Electrical, and Optical Properties of SnO2:Sb Films Prepared on Flexible Substrate at Room Temperature, Japanese Journal of Applied Physics, 2011;50:01AB10-1 - 01AB10- 5.
  • LEE S.U., HONG, B., CHOI, W.S., Structural, electrical, and optical properties of antimony-doped tin oxide films prepared at room temperature by radio frequency magnetron sputtering for transparent electrodes, J Vac Sci Technol A, 2009;27(4):996-1000.
  • LIU, J.W., LEE, S.C., YANG C.H., Properties of Strontium Copper Oxide Films Prepared by Radio Frequency Reactive Magnetron Sputtering with Different Oxygen Partial Pressures, Materials Transactions, 2007; 48(10): 2743- 2746.
  • SYARIF, D.G., MIYASHITA, A., YAMAKI, T., SUMITA, T., CHOI, Y., ITOH H., Preparation of anatase and rutile thin films by controlling oxygen partial pressure, Applied Surface Science, 2002; 193:287-292.
  • MONTERO, J., HERRERO, J., GUILLEN, C., Preparation of reactively sputtered Sb-doped SnO2 thin films: Structural, electrical and optical properties, Solar Energy Materials & Solar Cells, 2010; 94:612-616.
  • YUAN, L., GUO, Z.P., KONSTANTINOV, K., LIU, H.K., DOU, S.X., Nano-structured spherical porous SnO2 anodes for lithium-ion batteries, Journal of Power Sources, 2006; 159:345-348.
  • SONG-LIN, S., YONG-GANG, LIU., JING-YUAN, Z., TAI-HONG, W., Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery, Chinese Physics B, 2009; 18(10): 4564-4570.
  • LI, N., MARTIN, C.R., SCROSATI, B., Nanomaterial-based Li-ion battery electrodes, Journal of Power Sources, 2001; 97-98:240-243.
  • LIAN, P., ZHU, X., LIANG, S., LI, Z., YANG, W., WANG, H., High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries, Electrochimica Acta, 2011; 56:4532-4539.
  • LIU, B., GUO, Z.P., DU, G., NULI, Y, HASSAN, M.F., JIA, D., In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries, Journal of Power Sources, 2010; 195:5382-5386.
  • WINTER, M., BESENHARD, J.O., Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, 1999; 45:31-50.
  • XIE J., VARADAN, V.K., Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials, Materials Chemistry and Physics, 2005; 9:1274–1280.
  • SATISHKUMAR, B.C., VOGL, E.M., GOVINDARAJ, A., RAO, C.N.R., The decoration of carbon nanotubes by metal nanoparticles, Journal of Physics D: Applied physics, 1996; 29:3173-3176.
  • MAO-SHUI, L., ZHI-YONG, P., XIAN-WU, X., YING, D., SHENG-HAO, H., Effect of RF power on the properties of transparent conducting zirconiumdoped zinc oxide, Chinese Physics, 2007;16:548-552.
  • REN, J., YANG, J., ABOUIMRANE, A., WANG, D., AMINE, K., SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries, Journal of Power Sources, 2011; 196:8701– 8705.
  • LEE, J., Effects of oxygen concentration on the properties of sputtered SnO2:Sb films deposited at low temperature, Thin Solid Films, 2008; 516:1386- 1390.
  • WANG, Y., DJERDJ, I., SMARSLY, B., ANTONIETTI, M., AntimonyDoped SnO2 Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode, Chem. Mater., 2009; 21:3202-3209.
  • SONG, W.T., XIE, J., LIU, S.Y., ZHENG, Y.X., CAO, G.S., ZHU, T.J., ZHAO, X.B., Graphene Decorated with ZnO Nanocrystals with Improved Electrochemical Properties Prepared by a Facile In Situ Hydrothermal Route, Int. J. Electrochem. Sci., 2012;7:2164 – 2174.
  • HUANG, X.H., XIA, X.H., YUAN, Y.F., ZHOU, F., Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries, Electrochimica Acta, 2011;56:4960-4965.
  • UMAR, A., KARUNAGARAN, M., SUH, E-K., HAHN, Y.B., Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation, Nanotechnology, 2006;17:4072–4077.
  • WEIPAN, Z.W., DAI, Z.R., WANG, Z.L., Nanobelts of Semiconducting Oxides, Science, 2001;291:1947-1949.
  • SHEN, G.Z., BANDO, Y., LIU, B.D., GOLBERG, D., LEE, D., Characterization and Field-Emission Properties of Vertically Aligned ZnO Nanonails and Nanopencils Fabricated by a Modified Thermal-Evaporation Process, Adv Func Mater, 2005;16:410-416.
  • PAIK-KYUN, S., YOICHIRO, A., TOMOAKI, I., KENJI, E., Application of pulsed laser deposited zinc oxide films to thin film transistor device, Thin Solid Films 2008;516:3767–3771.
  • YAO, B.D., Formation of ZnO nanostructures by a simple way of thermal evaporation, Applied Physics Letters, 2002;81:757-759.
  • LEE, J.S., PARK, K., KANG, M.L., PARK, I.W., KIM, S.W., CHO, W.K., HAN, H.S., KIM, S., ZnO nanomaterials synthesized from thermal evaporation of ball-milled ZnO powders, Journal of Crystal Growth, 2003;254:423-431.
  • HAM, H., SHEN, G., CHO, J.H., LEE, T.J., SEO, S.H., LEE, C.J., Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties, Chemical Physics Letters, 2005;404:69-73.
  • UMAR, A., Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation, Applied Physics Letters, 2006;17: 173120-1 - 173120-3.
  • LEE, W., JEONG, M.C., MYOUNG, J.M., Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materilia, 2004;52:3949-3957.
  • SHEN, G., BANDO, Y., LEE, C.J., Synthesis and evolution of novel hollow zno urchins by a simple thermal evaporation process, J Phys Chem, 2005;109:10578-10583.
  • BOUHSSIRA, N., ABED, S., TOMASELLA, E., CELLIER, J., MOSBAH, A., AIDA, M.S., JACQUET, M., Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation, App Surf Sci, 2006;252:5594-5597.
  • DAI, Z.R., PAN, Z.W., WANG, Z.L., Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation, Adv Func Mater, 2003;13;9-24.
  • LI, X., Chemical vapor deposition-formed p-type ZnO thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2003;21: 1342- 1346.
  • FAY, S., KROLL, U., BUCHER, C., VALLAT-SAUVAIN, E., SHAH, A., Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes, Solar Energy Materials and Solar Cells,2005;86:385–397.
  • PURICA, M.,, BUDIANU, E., RUSU, E., DANILA, M., GAVRILA, R., Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD), Thin Solid Films, 2002;403–404:485–488.
  • NATSUME, Y., Low‐temperature conductivity of ZnO films prepared by chemical vapor deposition, J Appl Phys, 1992;72: 4203-4207.
  • LI, B.S., High quality ZnO thin films grown by plasma enhanced chemical vapor deposition, J Appl Phys, 2002;91:501-505.
  • HAGA, K., KATAHİRA, F., WATANABE, H., Preparation of ZnO films by atmospheric pressure chemical-vapor deposition using zinc acetylacetonate and ozone, Thin Solid Films, 1999; 343–344:145–147.
  • GORLA, C.R., Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition, J Appl Phys, 2002;85: 2595-2602.
  • WU, X., CAO, H., CHANG, R.P.H., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, J Appl Phys, 2004;95: 3141-3147.
  • ZHANG, B.P., Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Appl Phys Lett, 2003;83, 1635-1637.
  • Lıu, H., Feng, L., Zhaı, J., Jıang, L., Zhu, D., Reversible wettability of a chemical vapor deposition prepared zno film between superhydrophobicity and superhydrophilicity, Langmuir, 2004;20:5659–5661.
  • LALAUZE, R., BREUIL, P., PIJOLAT, C., Thin films for gas sensors. Sensor Actuators B-Chemical. 1991; B3:175-181.
  • SHANTHI, E., BANERJEE, A., CHOPRA, K.L., Dopant effects in sprayed tin oxide films. Thin Solid Films. 1982; 88:93-96.
  • DENG, H., RUSSELL, J.J., LAMB, R.N., JİANG, B., LI, Y., ZHOU, X.Y., Microstructure control of ZnO thin films prepared by single source chemical vapor deposition, Thin Solid Films, 2004;458:43–46.
  • KIM, K.S., KIM, H.W., Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition, Physica B: Condensed Matter, 2003;328:368–371.
  • XIANG, B., WANG, P., ZHANG, X., DAYEH, S.A.,APLIN, D.P.R., SOCI, C., YU , D., WANG, D., Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition, Nano Lett., 2007;7:323–328.
  • TOMPA, G. S., LIANG, S., GORLA, C., LU, Y., DOYLE, J., Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997;15: 1063-1068.
  • CHOUVIN, J., OLIVER, F. J., JUMAS, J. C., SIMON, B., BIENSAN, P., FERNANDEZ MARDIGAL, F. J., TIRADO, J. L., PEREZ VINCENTE, C., SnO reduction in lithium cells: study by x-ray absorption, 119Sn Mössbauer spectroscopy and X-ray diffraction, J. Electroanal. Chem. 2000; 494:136-146.
  • ZHANG, B.P., BINH, N.T., WAKATSUKİ, K., SEGAWA, Y., YAMADA, Y., USAMI, N., KAWASAKI, M., KOINUMA, H., Pressure-dependent ZnO nanocrsytal growth in a chemical vapor deposition process, J. Phys. Chem. B, 2004;108:10899–10902.
  • DATSYUK, V., KALYVA, M., PAPAGELIS, K., PARTHENIOS, J., TASIS, D., SIOKOU, A., KALLITSIS, I., GALIOTIS, C., Chemical Oxidation of Multiwalled Carbon Nanotubes, Carbon, 2008;46:833-840.
  • EOM, J.Y., KWON, H.S., LIU, J., ZHOU, O., Lithium Insertion into Purified and Etched Multi-Walled Carbon Nanotubes Synthesized on Supported Catalysts by Thermal CVD, Carbon, 2004;42:2589–2596.
  • SIMON, G.K., GOSWAMI, T., Improving Anodes for Lithium Ion Batteries, Metall. and Mater. Trans. A, 2011;42A:231-238.
  • ZHAO L., GAO L., Coating of Multi-Walled Carbon Nanotubes with Thick Layers of Tin(IV) Oxide, Carbon, 2004;42:1858-1861.
  • UCHIYAMA, H., SHIRAI, Y., KOZUKA, H., Formation of Spherical SnO2 Particles Consisting of Nanocrystals From Aqueous Solution of SnCl4 Containing Citric Acid via Hydrothermal Process, J. Cryst. Growth, 2011;319:70–78.
  • ZHANG, H., SONG, H., CHEN, X., ZHOU, J., ZHANG, H., Preparation and Electrochemical Performance of SnO2@Carbon Nanotube Core–Shell Structure Composites as Anode Material for Lithium-Ion Batteries, Electrochim. Acta, 2012;59:160– 167.
  • LIAN, P., ZHU, X., LIANG, S., LI, Z., YANG, W., WANG, H., High Reversible Capacity of SnO2/Graphene Nanocomposite As an Anode Material for Lithium-Ion Batteries, Electrochim. Acta, 2011:56:4532-4539.
  • AHN, D., XIAO, X., LI, Y., SACHDEV, A.K., PARK, H.W., YU, A., CHEN, Z., Applying Functionalized Carbon Nanotubes to Enhance Electrochemical Performances of Tin Oxide Composite Electrodes for Li-Ion Battery, J. Power Sources, 2012;212:66-72.
  • KIM, T., MO, Y.H., NAHM, K.S., OH, S.M., Carbon Nanotubes (CNTs) as a Buffer Layer in Silicon/CNTs Composite Electrodes for Lithium Secondary Batteries, J. Power Sources, 2006;162:1275-1281.
  • WHITBY, R.L.D., FUKUDA, T., MAEKAWA, T., JAMES, S.L., MIKHALOVSKY, S.V., Geometric Control and Tuneable Pore Size Distribution of Buckypaper and Buckydiscs, Carbon, 2008;46:949-956.
  • MUKHERJEE, R., KRISHNAN, R., LU, T.M., KORATKAR, N., Nanostructured Electrodes for Hİgh-Power Lithium Ion Batteries, Nano Energy, 212;1;518-533.
  • SONG, K., PARK, S., ALAMGIR, F.M., CHO, J., LIU, M., Nanostructured Electrodes for Lithium-Ion and Lithium-Air Batteries: The Latest Developments, Challenges, and Perspectives, Mater. Sci. Engin. R., 2011;72:203-252.
  • JOUHANNAUD, J., ROSSIGNOL, J., STUERGA, D., Rapid Synthesis of Tin (IV) Oxide Nanoparticles by Microwave Induced Thermohydrolysis, J. of Solid State Chem., 2008;181:1439-1444.
  • NOEROCHIM, L., WANG, J.Z., CHOU, S.L., LI, H.J., LIU, H.K., SnO2- Coated Multiwall Carbon Nanotube Composite Anode Materials for Rechargeable Lithium-Ion Batteries, Electrochim. Acta, 2010;56:314-320.
  • FU, Y., MA, R., SHU, Y., CAO, Z., MA, X., Preparation and Characterization of SnO2/Carbon Nanotube Composite for Lithium Ion Battery Applications, Mater. Lett., 2009;63:1946-1948.
  • LIU, X.M., HUANG, D.Z., OH, W.S., ZHANG, B., MA, P.C., YUEN, M.M.F., KIM, J.K., Carbon Nanotube (CNT)-Based Composites as Electrode Material for Rechargeable Li-Ion Batteries: A Review, Compos. Sci. Technol., 2012;72:121-144.
  • CHANDRASEKAR M.S., MALATHY P., Pulse and pulse reverse plating—Conceptual, advantages and applications Electrochimica Acta, 2008;53:3310-3313.
  • LANDOLT D., MARLOT A., Microstructure and composition of pulseplated metals and alloys Surface and Coatings Technology 2003;8-6:169 –170.
  • MANDICH N.V., Pulse and Pulse reverse Plating, Metal Finishing, 2000;98:375-376.
  • GHAEMI M., BINDER L., Effects of direct and pulse current on electrodeposition of manganese dioxide Journal of Power Sources 2002;111:248– 257.
  • ZHANG S., XING Y., JIANG T., DU Z., LI F., HE L., LIU W. , A threedimensional tin-coated nanoporous copper for lithium-ion battery anodes J.Power Sources 2011;196:6915–6925.
  • KOICHI U., SHINEI K., YOSHIHIRO K., NAOAKI K., Shigeru Ito Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries Journal of Power Sources 2009;189:224–236
  • GUO Z.P., ZHAO Z.W., LIU H.K., DOU S.X. Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi Nanocomposites Carbon 2005;43:1392– 1398.
  • HUANG L., CAI J.-S., HE Y., KE F.-S., SUN S.-G, Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries, Electrochem. Commun. 2009;11:950–954.
  • ZHONG W. , WENHUAİ T. , XİNGGUO L., Synthesis and electrochemistry properties of Sn–Sb ultrafine particles as anode of lithium-ion batteries, Journal of Alloys and Compounds, 2007;439:350–355.
  • ZHAO H., JIANG C., HE X., REN J., WAN C., Advanced structures in electrodeposited tin base anodes for lithium ion batteries Electrochim. Acta 2007;52;7820–7827.
  • JUNGWON P., JIYONG E., HYUKSANG K., Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries Electrochemistry Communications 2009;11:596–604.
  • WANG G.W., AHN J.H., LINDSAY M.J.,SUN L., Graphite-Sn composite as anode materials for Li ion batteries J.Power Sources 2001;97-98:211-215.
  • ZHAO X., XIA Z., XIA D., Electrochemical performance of Sn film reinforced by Cu nanowire Electrochim. Acta 2010;55:6004–6006.
  • CARPENTER C.R., SHIPWAY P.H., ZHU Y., The influence of CNT codeposition on electrodeposit grain size and hardness Surface & Coatings Technology 2011:205:5059–5065.
  • CHEN X.H., CHEN C.S., XIAO H.N., CHENG F.Q., ZHANG G., YI G.J. Corrosion behavior of carbon nanotubes–Ni composite coating Surface & Coatings Technology 2005;191:351–356.
  • CHEN X.H., CHENG F.Q., LI S.L., ZHOU L.P., LI D.Y., Electrodeposited nickel composites containing carbon nanotubes Surface and Coatings Technology 2002:155;274–285.
  • HYUN LEE J., BYUNG-SEON SEUNG K., YANG B., JUNG H.-T., Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid cofiltration for high-performance lithium battery electrodes J.Power Sources 2009:194;520–526.
  • AHN D. , XIAO X., LI Y., SACHDEV A. K.., WOONG PARK H., YU A. , CHEN Z., Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery J. Power Sources 2012:212;66-77.
  • JHAN Y.-R., DUH J.-G., TSAI S.-Y., Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction Diam. Relat. Mater. 2011;20:413–415.
  • PARK J., EOM J.Y., KWON H.S. Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries Electrochem. Commun. 2009;11:596–603.
APA Akbulut H, AYDIN A, ALP A, ÖZACAR M, GÜLER M, ALAF M, AYDIN Y, PARLAK S, GÜNSEL H, DOĞAN f (2012). Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. , 1 - 349.
Chicago Akbulut Hatem,AYDIN ALİ OSMAN,ALP Ahmet,ÖZACAR Mahmut,GÜLER MEHMET OĞUZ,ALAF MIRAÇ,AYDIN Yasemin,PARLAK Safa,GÜNSEL Hilal,DOĞAN fatih Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. (2012): 1 - 349.
MLA Akbulut Hatem,AYDIN ALİ OSMAN,ALP Ahmet,ÖZACAR Mahmut,GÜLER MEHMET OĞUZ,ALAF MIRAÇ,AYDIN Yasemin,PARLAK Safa,GÜNSEL Hilal,DOĞAN fatih Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. , 2012, ss.1 - 349.
AMA Akbulut H,AYDIN A,ALP A,ÖZACAR M,GÜLER M,ALAF M,AYDIN Y,PARLAK S,GÜNSEL H,DOĞAN f Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. . 2012; 1 - 349.
Vancouver Akbulut H,AYDIN A,ALP A,ÖZACAR M,GÜLER M,ALAF M,AYDIN Y,PARLAK S,GÜNSEL H,DOĞAN f Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. . 2012; 1 - 349.
IEEE Akbulut H,AYDIN A,ALP A,ÖZACAR M,GÜLER M,ALAF M,AYDIN Y,PARLAK S,GÜNSEL H,DOĞAN f "Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi." , ss.1 - 349, 2012.
ISNAD Akbulut, Hatem vd. "Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi". (2012), 1-349.
APA Akbulut H, AYDIN A, ALP A, ÖZACAR M, GÜLER M, ALAF M, AYDIN Y, PARLAK S, GÜNSEL H, DOĞAN f (2012). Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. , 1 - 349.
Chicago Akbulut Hatem,AYDIN ALİ OSMAN,ALP Ahmet,ÖZACAR Mahmut,GÜLER MEHMET OĞUZ,ALAF MIRAÇ,AYDIN Yasemin,PARLAK Safa,GÜNSEL Hilal,DOĞAN fatih Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. (2012): 1 - 349.
MLA Akbulut Hatem,AYDIN ALİ OSMAN,ALP Ahmet,ÖZACAR Mahmut,GÜLER MEHMET OĞUZ,ALAF MIRAÇ,AYDIN Yasemin,PARLAK Safa,GÜNSEL Hilal,DOĞAN fatih Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. , 2012, ss.1 - 349.
AMA Akbulut H,AYDIN A,ALP A,ÖZACAR M,GÜLER M,ALAF M,AYDIN Y,PARLAK S,GÜNSEL H,DOĞAN f Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. . 2012; 1 - 349.
Vancouver Akbulut H,AYDIN A,ALP A,ÖZACAR M,GÜLER M,ALAF M,AYDIN Y,PARLAK S,GÜNSEL H,DOĞAN f Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi. . 2012; 1 - 349.
IEEE Akbulut H,AYDIN A,ALP A,ÖZACAR M,GÜLER M,ALAF M,AYDIN Y,PARLAK S,GÜNSEL H,DOĞAN f "Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi." , ss.1 - 349, 2012.
ISNAD Akbulut, Hatem vd. "Yeni nano yapılı metal oksit esaslı yarı iletken anotlar kullanılarak Li iyon pillerin kapasitelerinin geliştirilmesi". (2012), 1-349.