4 4

Proje Grubu: MAG Sayfa Sayısı: 183 Proje No: 111M021 Proje Bitiş Tarihi: 01.02.2014 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi

Öz:
-
Anahtar Kelime:

Erişim Türü: Erişime Açık
  • Besenhard, J. A. 1999. Handbook of battery Materials, Wiley-VCH, Weinheim.
  • Linden, D., Reddy, T. B. 2001. Handbook of Batteries. 3. Baskı, McGraw-Hill, New York.
  • Kim, J. S., Johnson, C. S., Vaughey, J. T., Hackney, S. A., Walz, K. A., Zeltner, W. A., Veerson, M. A., Thackeray, M. M. 2004. “The Electrochemical Stability of Spinel Electrodes Coated with ZrO2 ,  Al2 O 3 ,  and SiO2 from Colloidal Suspensions”, J. Electrochem. Soc., 151, A1755-A1761.
  • Strobel, P., Anne, M., Chabre, Y., Palacín, M. R., Seguin, L., Vaughan, G. Amatucci, G., Tarascon, J. M. 1999. “Characteristics of the 4 V plateau in LiMn2(O4−xFx) studied by in situ synchrotron X-ray diffraction”, J. Power Sources, 81-82, 458-462.
  • Palacín, M. R., Le Cras, F., Seguin, L., Anne, M., Chabre, Y., Tarascon, J. M., Amatucci, G., Vaughan, G., Strobel, P. 1999. “In SituStructural Study of 4V-Range Lithium Extraction/Insertion in Fluorine-Substituted LiMn2O4”, J. Solid State Chem., 144, 361-371.
  • Nagaura, T., Nagamine, M., Tanabe, I., Miyamoto, N. 1989. Prog. Batt. Solar Cells, 8, 84
  • Nagaura, T., Tozawa, K. 1990. Prog. Batt. Solar Cells, 9, 209.
  • Mizushima, K., Jones, P. C., Wiseman, P. J., Goodenough, J. B. 1980 “LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density”, Mat. Res. Bull., 15,783-789.
  • Besenhard, J. O. 1976. “Absorption of iodine by coal and lignite”, Carbon, 14, 93-95.
  • Orsini, F., Du Pasquier, A., Beaudouin, B., Tarascon, J. M., Trentin, M., Langenhuizen, N., De Beer, E., Notten, P. 1999. “In situ SEM study of the interfaces in plastic lithium cells”, J. Power Sources, 81, 918-921.
  • Tarascon J. M., Guymard, D. 1991. “Li Metal‐Free Rechargeable Batteries Based on Li1 + x Mn2 O 4Cathodes  ( 0 ≤ x ≤ 1 )  and Carbon Anodes”, J. Electrochem. Soc., 138, 2864-2868.
  • Dahn, J. R., Von Sacken, U., Juzkow, M. W., Al-Janaby, H. 1991. “Rechargeable LiNiO2 / Carbon Cells”, J. Electrochem. Soc., 138, 2207-2211.
  • Ozawa, K. 1994. “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system”, Solid State Ionics, 69, 212-221.
  • Dahn, J. R., Von Sacken, U., Michal, C. A. 1990. “Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure”, Solid State Ionics, 44, 87-97.
  • Gummow R. J., Thackeray, M. M. 1992. “Lithium-cobalt-nickel-oxide cathode materials prepared at 400 C for rechargeable lithium batteries”, Solid State Ionics, 53-56, 681-687.
  • Rossen, E., Jones, C. D. W., Dahn, J. R.1992. “Structure and electrochemistry of LixMnyNi1−yO2”, Solid State Ionics, 57, 311-318.
  • Delmas, C., Saadoune, I., Rougier, A. 1993. “The cycling properties of the LixNi1−yCoyO2 electrode”, J. Power Sources, 43-44, 595-602.
  • Ohzuku, T., Ueda, A., Nagayama, M., Iwakoshi, Y., Komori, H. 1993. “Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells” Electrochem. Acta., 38, 1159-1167.
  • Zhecheva, E., Stoyanova, R. 1993. “Stabilization of the layered crystal structure of LiNiO2 by Co-substitution” Solid State Ionics, 66, 143-149.
  • Yoshio, M., Noguchi, H., Itoh, J., Okada, M., Mouri, T. 2000. “Preparation and properties of LiCoyMnxNi1−x−yO2 as a cathode for lithium ion batteries”, J. Power Sources, 90, 176-181.
  • Ohzuku T., Makimura, Y. 2001. “Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries”, Chem. Lett., 30, 744-745.
  • Ohzuku T., Makimura, Y. 2001. “Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries”, Chem. Lett., 30, 642-643.
  • Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B. 1997. “Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries”, J. Electrochem. Soc., 144, 1188-1194.
  • Yamada, A., Chung, S. C., Hinokuma, K. 2001. “Optimized LiFePO4 for Lithium Battery Cathodes”, J. Electrochem. Soc., 148, A224-A229.
  • Thackeray, M. M., David, W. I. F., Bruce, P. G., Goodenough, J. B. 1983. “Lithium insertion into manganese spinels”, Mater. Res. Bull., 18, 461-472.
  • Jang ,D. H., Shin, Y. J., Oh, S. M. 1996. "Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li xMn2 O 4 Cells", J. Electrochem. Soc., 143, 2204-2211.
  • Wu, E. J., Tepesch, P. D., Ceder, G. 1998. " Size and charge effects on the structural stability of LiMO2 (M = transition metal) compounds", Philosophical Magazine B, 77, 1039-1047.
  • Reimers, J. N., Dahn J. R. 1992. "Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2", J. Electrochem. Soc., 139, 2091-2097.
  • Amatucci, G. G., Tarascon, J. M., Klein, L. C. 1996. " CoO2, The End Member of the Li x CoO2 Solid Solution", J. Electrochem. Soc., 143, 1114-1123.
  • Chebiam, R. V., Kannan, A. M., Prado, F., Manthiram, A. 2001. "Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries" 3, 624-627.
  • Chebiam, R. V., Prado F., Manthiram, A. 2001. "Soft Chemistry Synthesis and Characterization of Layered Li1-xNi1-yCoyO2-δ (0 ≤ x ≤ 1 and 0 ≤ y ≤ 1)", Chem. Mater., 13, 2951-2957.
  • Choi , J., Manthiram, A. J. 2005. "Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1 ∕ 3Mn1 ∕ 3Co1 ∕ 3O2", Electrochem. Soc., 152, A1714-A1718.
  • Choi, J., Manthiram, A. 2005. "Structural and electrochemical characterization of the layered LiNi0.5−yMn0.5−yCo2yO2 (0 ≤ 2y ≤ 1) cathodes", Solid State Ionics, 176, 2251-2256.
  • Morales, J., Perez-Vincente, C., Tirado, J. L. 1990. "Cation distribution and chemical deintercalation of Li1-xNi1+xO2", Mat. Res. Bull., 25, 623-630.
  • Whittingham, M. S. 1996. U. S. Patent 4049887
  • Thompson, A. H., Whittingham, M. S. 1977. "Transition metal phosphorus trisulfides as battery cathodes", Mater. Res. Bull., 12, 741-744.
  • Jacobson, A. J., Whittingham, M. S. 1978, U. S. Patent 4143213
  • Whittingham, M. S. 1978. "Chemistry of intercalation compounds: Metal guests in chalcogenide hosts", Prog. Solid State Chem., 12, 41-99.
  • Ravet, N., Goodenough, J. B., Besner, S., Simoneau, M., Hovington, M., Armand M. 1999. The 196th Electrochemical Soc. Meeting Abstracts No.127 , The Electrochemical Society , New Jersey, USA.
  • Ravet N., Besner, S., Simoneau, M., Vallee, A., Armve, M., Magnan, J. F. 2000. European Patent 1049182A2.
  • Huang, H., Yin, S. -C., Nazar, L. F. 2001. "Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates", Electrochem. Solid State Lett., 4, A170-A172.
  • Fu, L. J., Liu, H., Li, C., Wu, Y. P., Rahm, E., Holze, R., Wu, H. Q. 2006. "Surface modifications of electrode materials for lithium ion batteries", Solid State Sciences, 8, 113-128.
  • Yao, N. P., Heredy, L. A., Saunders, R. C. 1971. "Emf Measurements of Electrochemically Prepared Lithium‐Aluminum Alloy", J. Electrochem. Soc., 118, 1039-1041.
  • Huggins, R. A. 2002. "Alternative materials for negative electrodes in lithium systems ", Solid State Ionics, 152, 61-68.
  • Pistoia, G., Wang, D. 1993. "Aspects of the Li+ insertion into LixMn2O4 for 0<x<1" Solid State Ionics, 66, 135-142.
  • Thackeray, M. M. 1995. "Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries" J. Electrochem. Soc., 142, 2558-2563
  • Thackeray, M. M., Shao-Horn, Y., Kahaian, A. J., Kepler, K. D., Skinner, E., Vaugney, J. T., Hackney, S. A. 1998. "Structural Fatigue in Spinel Electrodes in High Voltage  ( 4 V  )  Li / LixMn2O4 Cells", Electrochem. Solid-State Lett., 1, 7-9.
  • Kock, A., Rossouw, M. H., Picciotto, L. A., Thackeray, M. M., David, W. I. F., Ibberson R. M. 1990. "Defect spinels in the system Li2O.yMnO2 (y>2.5): A neutron-diffraction study and electrochemical characterization of Li2Mn4O9", Mat. Res. Bull., 25, 657-664.
  • Rossouw, M. H., Kock, A., Picciotto, L. A., Thackeray, M. M., David, W. I. F., Ibberson R. M. 1990. "Structural aspects of lithium-manganese-oxide electrodes for rechargeable lithium batteries", Mat. Res. Bull., 25, 173-182.
  • Choi, S., Manthiram, A. 2000. "Synthesis and Electrode Properties of Metastable Li2Mn4 O 9 − δSpinel Oxides", J. Electrochem. Soc., 147, 1623-1629.
  • Kim, J.,Manthiram, A. 1998. "Low Temperature Synthesis and Electrode Properties of Li4Mn5 O12" J. Electrochem. Soc., 145, L53-L55.
  • Thackeray, M. M., Kock, A., Rossouw, M. H., Liles, D. C., Hoge, D., Bittihn, R. 1992. "Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications", J. Electrochem. Soc., 139, 363-366.
  • Horn, Y. H., Hackney, S. A., Johnson, C. S., Kahain, A. J., Thackeray, M. M. 1998. "Structural Features of Low-Temperature LiCoO2and Acid-Delithiated Products", J.Solid State Chem., 140, 116-127.
  • Obrovac, M. M., Gao, Y., Dahn, J. R. 1998. "Explanation for the 4.8-V plateau in LiCrxMn22xO4", Phys. Rev. B, 57, 5728-5733.
  • Sigala, C., Guyumard, D., Verbaere, A., Piffard, Y., Tournoux, M. 1995. "Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2 − yO4 (0≤ y ≤ 1)", Solid State Ionics, 81, 167-170.
  • Kawai, H., Nagata, M., Tabuchi, M., Tukamoto, H., West, A. R. 1998. "Novel 5 V Spinel Cathode Li2FeMn3O8 for Lithium Ion Batteries", Chem. Mater., 10, 3266-3268.
  • Gao, Y., Myrtle, K., Zhang, M., Reimers, J. N., Dahn, J. R. 1996. "Valence band of LiNi xMn22xO4 and its effects on the voltage profiles of LiNi xMn22xO4/Li electrochemical cells", Phys. Rev. B, 54, 16670-16675.
  • Zhong, Q., Bonakdarpour, A., Zhang,, M., Gao, Y., Dahn, J. R. 1997. "Synthesis and Electrochemistry of LiNi x Mn2 − x O 4", J. Electrochem. Soc., 144, 205-213.
  • Eli, Y. E., Howard, Jr. W. F. 1997. "LiCu x  II Cu y  III Mn [ 2 −  ( x + y )  ]   III  ,  IV  O 4 : 5 V  Cathode Materials", J. Electrochem. Soc., 144, L205-L207.
  • Eli, Y. E., Howard, Jr. W. F., Lu, S. H., Mukerjee, S., McBreen, J., Vaughey, J. T., Thackeray, M. M. 1998. "LiMn2 − x Cu x  O 4 Spinels (0.1 ⩽ x ⩽ 0.5): A new Class of 5 V Cathode Materials for Li Batteries: I. Electrochemical, Structural, and Spectroscopic Studies", J. Electrochem. Soc., 145, 1238-1244.
  • Eli, Y. E., Vaughey, J. T., Thackeray, M. M., Mukerjee, S., Yang, X. Q., McBreen, J. 1999. "LiNi x Cu0.5 − x Mn1.5 O 4 Spinel Electrodes, Superior High‐Potential Cathode Materials for Li Batteries: I. Electrochemical and Structural Studies", J. Electrochem. Soc., 146, 908-913.
  • Kawai, H., Nagata, M., Tukamoto, H., Kageyama, H., West, A. R. 1999. "5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3−XO8: -1≤X≤1", Electrochim. Acta, 45, 315-327.
  • Kawai, H., Nagata, M., Tukamoto, H., West, A. R. 1999, "High-voltage lithium cathode materials", J. Power Sources, 81-82, 67-72.
  • Ohzuku, T., Takeda, S., Iwanaga, M. 1999. "Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries", J. Power Sources, 81-82, 90-94.
  • Shigemura, H., Sakaebe, H., Kagetama, H., Kobayashi, H., West, A. R., Kanno, R., Morimoto, S., Nasu, S., Tabuchi, M. 2001. "Structure and Electrochemical Properties of LiFe x Mn2 − x  O 4  ( 0 ⩽ x ⩽ 0.5 )  Spinel as 5 V Electrode Material for Lithium Batteries", J. Electrochem. Soc., 148, A730-A736.
  • Idemoto, Y., Narai, H., Koura, N. 2003. "Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries", J. Power Sources, 119-121, 125-129.
  • Eftekhari, A. 2003. "Electrochemical performance and cyclability of LiFe0.5Mn1.5O4 as a 5 V cathode material for lithium batteries", J. Power Sources, 124, 182-190.
  • Lloris, J. M., León, B. Vicente, C. P., Tirado, J. L., Womes, M., Fourcada, J. O., Jumas J. C. 2004. "Composition and electrochemical properties of LiCux Mn2)x O4 and LiCu0.5)y Aly Mn1.5O4", J. Solid State Electochem., 8, 521-525.
  • Alcántara, R., Jaraba, M., Lavela, P., Tirado, J. L. 2004. "New LiNi y Co1 − 2y Mn1 + y  O 4 Spinel Oxide Solid Solutions as 5 V Electrode Material for Li - Ion Batteries", J. Electrochem. Soc., 151, A53-A58.
  • Oh, S. W., Park, S. H., Kim, J. H., Bae, Y. C., Sun, Y. K. 2006. “Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution” J. Power Sources, 19, 464-467.
  • Parki S. C., Han, Y. S., Kang, Y. S., Lee, P. S., Ahn, S., Lee, H. M., Lee, J. Y. 2001. "Electrochemical Properties of LiCoO2-Coated LiMn2 O 4Prepared by Solution-Based Chemical Process", J. Electrochem. Soc., 148, A680-A688.
  • Xia, Y., Zhou, Y., Yoshio M. 1997. "Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells", J. Electrochem. Soc., 144, 2593-2600.
  • Inoue, T., Sano, M. 1998. "An Investigation of Capacity Fading of Manganese Spinels Stored at Elevated Temperature", J. Electrochem. Soc., 145, 3704-3707.
  • Yamane, H., Inoue, T., Fujita,, M., Sano M. 2001. "A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80 C, and the suppressing substances of its fading", J. Power Sources, 99, 60-65.
  • Aoshima, T., Okahara, K., Kiyohara, C., Shizuka, K. 2001. "Mechanisms of manganese spinels dissolution and capacity fade at high temperature ", J. Power Sources, 97-98, 377-380.
  • Liu, Z., Wang, H., Fang, L., Lee, J. Y., Gam, L. M. 2002. "Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO2", J. Power Sources, 104, 101-107.
  • Komaba, S., Kumagai, N., Sasaki, T., Miki, Y. 2001. “Manganese dissolution from lithium doped Li-Mn-O spinel cathode materials into electrolyte solution” Electrochemistry, 69, 784-787 (2001).
  • Tsunekawa, H., Tanimoto, S., Marubayashi, R., Fujita, M., Kifune, K., Sano, M. 2002. "Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries", J. Electrochem. Soc., 149, A1326-A1331.
  • Wang, L.-F., Ou, C.-C., Striebel, K. A., Chen, J.-S. 2003. "Study of Mn Dissolution from LiMn2 O 4 Spinel Electrodes Using Rotating Ring-Disk Collection Experiments", J. Electrochem. Soc., 150, A905-A911.
  • Komaba, S., Kaplan, B., Ohtsuka, T., Kataoka, Y., Kumagai, N., Groult, H. 2003. "Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries", J. Power Sources, 119-121, 378-382.
  • Saitoh, M., Sano, M., Fujita, M., Sakata, M., Takata, M., Nishibori, E. 2004. "Studies of Capacity Losses in Cycles and Storages for a Li1.1Mn1.9 O 4 Positive Electrode", J. Electrochem. Soc., 151, A17-A22.
  • Wu, M.-S., Chiang, P.-C. J., Lin, J.-C. 2005. "Electrochemical Investigations on Capacity Fading of Advanced Lithium-Ion Batteries after Storing at Elevated TemperatureBatteries, Fuel Cells, and Energy Conversion", J. Electrochem. Soc., 152, A1041-A1046.
  • Wang, L.-F., Fang, B.-J., Chen, J.-S. 2005. "Rotating ring-disc electrode measurements of manganese dissolution and capacity loss of Li1+xMn2−xO4 and Li1+xAlyMn2−x−yO4 spinel electrodes for lithium-ion batteries", J. Power Sources, 150, 1-10.
  • Hunter, J. C. 1981. "Preparation of a new crystal form of manganese dioxide: λ-MnO2", J. Solid State Chem., 39, 142-147.
  • Thackeray M.M. 1999. "Spinel Electrodes for Lithium Batteries" J. Am. Ceram. Soc., 82,3347-3354.
  • Ohzuku, T., Kitagawa, M., Hirai, T. 1990. "Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell: III . X‐Ray Diffractional Study on the Reduction of Spinel‐ Related Manganese Dioxide", J. Electrochem. Soc., 137, 769-775.
  • Choa, J.,Thackeray, M. 1999. "Structural Changes of LiMn2 O 4 Spinel Electrodes during Electrochemical Cycling", J. Electrochem. Soc., 146, 3577-3581.
  • Levi, M. D., Gamolsky, K., Aurbach, D., Heider, U., Oesten, R. 2000. "Evidence for Slow Droplet Formation during Cubic‐to‐Tetragonal Phase Transition in Li x Mn2 O 4 Spinel", J. Electrochem. Soc., 147, 25-33.
  • Sun, Y.-K., Yoon, C. S., Kim, C. K., Youn, S. G., Lee, Y.-S., Yoshio, M., Oh, I. H. 2001. "Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling", J. Mater. Chem., 11, 2519-2522.
  • Huang, H., Vincent, C. A., Bruce, P. G. 1999. "Correlating Capacity Loss of Stoichiometric and Nonstoichiometric Lithium Manganese Oxide Spinel Electrodes with Their Structural Integrity", J. Electrochem. Soc., 146, 3649-3654.
  • D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, ve R. Oesten, 1999. "Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques", J. Power Sources, 81, 472-479.
  • Shin, Y., Manthiram, A. 2002. "Microstrain and Capacity Fade in Spinel Manganese Oxides", Electrochem. Solid-State Lett., 5, A55-A58.
  • Shin, Y., Manthiram, A. 2003. "High Rate, Superior Capacity Retention LiMn2 − 2y Li y Ni y  O 4Spinel Cathodes for Lithium-Ion Batteries", Electrochem. Solid-State Lett., 6, A34-A36.
  • Shin, Y., Manthiram, A. 2003. "Influence of the Lattice Parameter Difference between the Two Cubic Phases Formed in the 4 V Region on the Capacity Fading of Spinel Manganese Oxides", Chem. Mater., 15, 2954-2961.
  • Shin, Y., Manthiram, A. 2004. "Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides" J. Electrochem. Soc., 151, A204-A208.
  • Yamada, A., Miura, K., Hinokuma, K., Tanaka, M. 1995. "Synthesis and Structural Aspects of LiMn2 O 4 ± δ as a Cathode for Rechargeable Lithium Batteries", J. Electrochem. Soc., 142, 2149-2156.
  • Xia, Y., Yoshio, M. 1997. "Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part IV. High and low temperature performance of LiMn2O4", J. Power Sources, 66, 129-133.
  • Lee, J. H., Hong, J. K., Jang, D. H., Sun, Y. K.,Oh, S. M., 2000. "Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries", J. Power Sources, 89, 7-14.
  • Gummow, R. J., Kock, A., Thackerayi M. M. 1994. "Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells", Solid State Ionics, 69, 59-67.
  • Sun, X., Yang, X. Q., Balasubramanian ,M., McBreen, J., Xia, Y., Sakai, T. 2002. "In Situ Investigation of Phase Transitions of Li1 + y Mn2 O 4Spinel during Li-Ion Extraction and Insertion", J. Electrochem. Soc., 149, A842-A848.
  • Pistoia, G., Antonini, A., Rosati, R, Bellitto, C., Ingo, G. M. 1997. "Doped Li−Mn Spinels:  Physical/Chemical Characteristics and Electrochemical Performance in Li Batteries", Chem. Mater., 9, 1443-1450.
  • Kock, A., Ferg, E., Gummow, R. J. 1998. "The effect of multivalent cation dopants on lithium manganese spinel cathodes" J. Power Sources, 70, 247-252.
  • Hernan, L, Morales, J., Sanchez, L., Santos, J. 1999. "Use of Li–M–Mn–O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries", Solid State Ionics, 118, 179-185.
  • Lee, Y. S., Kumada, N., Yoshio, M. 2001. "Synthesis and characterization of lithium aluminum-doped spinel (LiAlxMn2−xO4) for lithium secondary battery", J. Power Sources, 96, 376-384.
  • Hwang, B. J., Santhanam, R., Hu, S. G. 2002. "Synthesis and characterization of multidoped lithium manganese oxide spinel, Li1.02Co0.1Ni0.1Mn1.8O4, for rechargeable lithium batteries", J. Power Sources, 108, 250-255.
  • Okada, M., Lee, Y. S., Yoshio, M. 2000. "Cycle characterizations of LiMxMn2−xO4 (M=Co, Ni) materials for lithium secondary battery at wide voltage region", J. Power. Sources, 90, 196-200.
  • Bang, H. J., Donepudi, V. S., Prakash, J. 2002. "Preparation and characterization of partially substituted LiMyMn2−yO4 (M=Ni, Co, Fe) spinel cathodes for Li-ion batteries", Electrochim. Acta, 48, 443-451.
  • Hong, Y. S., Han, C. H., Kimi K., Kwon, C. W., Campet, G.,Choy, J. H. 2001. "Structural and electrochemical properties of the spinel Li(Mn2−xLix/4Co3x/4)O4", Solid State Ionics, 139, 75-81.
  • Robertson, D., Lu, S. H., Howard, W. F. Jr. 1997. "M 3 + ‐Modified LiMn2 O 4 Spinel Intercalation Cathodes: II. Electrochemical Stabilization by Cr3+", J. Electrochem. Soc., 144, 3505-3512.
  • Kim, J. S., Vaughey, J. T., Johnson, C. S., Thackeray, M. M. 2003. "Significance of the Tetrahedral A Site on the Electrochemical Performance of Substituted Li1.05 M 0.05Mn1.90 O 4 Spinel Electrodes  (  M  = Li , Mg , Zn , Al )  in Lithium Cells", J. Electrochem. Soc., 150, A1498-A1502.
  • Park, S. H., Oh, S. W., Myung, S. T., Sun, Y. K. 2004. "Mo6 + -Doped Li [ Ni ( 0.5 + x ) Mn ( 1.5 − 2x ) Mo x  ]  O 4 Spinel Materials for 5 V Lithium Secondary Batteries Prepared by Ultrasonic Spray Pyrolysis", Electrochem. Solid-State Lett., 7, A451-A454.
  • Zhou, F., Zhao, X., Zheng, H., Zhang,, Z., Ji, M. 2004. "Synthesis and characterization of Sc-doped LiScxMn2−xO4 spinel cathode material for Li-ion batteries", Materials Letters, 58, 3720-3724.
  • Nieto, S., Majumder, S. B., Katiyar, R. S. 2004. "Improvement of the cycleability of nano-crystalline lithium manganate cathodes by cation co-doping", J. Power. Sources, 136, 88-98.
  • Zhan, H.,Zhou, Y., "Investigation on a new doped spinel phase-LiSrxMn2−xO4", Materials Letters, 58, 3276-3279.
  • Chung, K. Y., Yoon, W. S., Lee, H. S., Yang, X. Q., McBreen, J., Deng, B. H., Wang, X. Q., Yoshio, M., Wang, R., Gui, J., Okada, M. 2005. "Comparative studies between oxygen-deficient LiMn2O4 and Al-doped LiMn2O4", J. Power. Sources, 146, 226-231.
  • Chen, Z., Amine, K. 2006. "Capacity Fade of Li1 + x Mn2 − x O4-Based Lithium-Ion Cells", J. Electrochem. Soc., 153, A316-A320.
  • Hwang, B. J., Santhanam, R., Liu, D. G., Tsai, Y. W. 2001. "Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol–gel method", J. Power. Sources, 102, 326-331.
  • Lee, J -F., Tsai, Y. W., Santhanam, R., Hwang, B. J., Yang, M. H., Liu, D. G. 2003. "Local structure transformation of nano-sized Al-doped LiMn2O4 sintered at different temperatures", J. Power. Sources, 119-121, 721-726.
  • Curtis, C. J., Wang, J., Schulz, D. L. 2004. "Preparation and Characterization of LiMn2 O 4 Spinel Nanoparticles as Cathode Materials in Secondary Li Batteries", J. Electrochem. Soc., 151, A590-A598.
  • Kanna, A. M., Manthiram, A. 2002. "Surface/Chemically Modified LiMn2 O 4 Cathodes for Lithium-Ion Batteries", Electrochem. Solid-State Lett., 5, A167-A169.
  • Cho, J., Kim, G. B., Lim, H. S., Kim, C. S., Yoo, S. I. 1999. "Improvement of Structural Stability of LiMn2 O 4 Cathode Material on 55  C  Cycling by Sol‐Gel Coating of LiCoO2Articles", Electrochem. Solid-State Lett., 2, 607-609.
  • Sun, Y. K., Hong, K. J., Parakash, J. 2003. "The Effect of ZnO Coating on Electrochemical Cycling Behavior of Spinel LiMn2 O 4 Cathode Materials at Elevated Temperature", J. Electrochem. Soc., 150, A970-A972.
  • Lee, S. W., Kim, K. S., Moon, H. S., Lee, J. P., Kim, H. J., Cho, B. W., Cho, W. I., Park, J. W. 2004. "Electrochemical and structural characteristics of metal oxide-coated lithium manganese oxide (spinel type): Part I. In the range of 2.5–4.2 V", J. Power. Sources, 130, 227-232..
  • Watanabe, M., Kanba, M., Nagaoka, K., Shinora, I. 1982. "Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application", J. Appl. Polym. Sci. 27, 4191-4198.
  • Belliard, F., Connor, P. A., Irvine, J.T.S. 2000. “Novel tin oxide-based anodes for Li-ion batteries”, Solid State Ionics, 135, 163-167.
  • Xianjun, Z., Yanwu, Z., Shanthi, M., Meryl, D. S., Rodney S. R. 2011. “Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation”, J. Power Sources, 196, 6473-6477.
  • Yu, Y., Chen, C. H., Shi, Y. 2007. “A Tin-Based Amorphous Oxide Composite with a Porous, Spherical, Multideck-Cage Morphology as a Highly Reversible Anode Material for Lithium-Ion Batteries”, Adv. Mater., 19, 993-997.
  • Christopher A. B., Liwen, J., Zhan, L., Ozan, T., Xiangwu, Z., Saad, A. K. 2011. “Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes” Appl. Mater. And Inter., 3, 2534-2542.
  • Bin, L., Zai, P. G., Guodong, D., Yanna, N., Mohd, F. H., Dianzeng, J. 2011. “In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries” Journal of Power Sources, 190, 5382-5385.
  • Watson, J., 1984. “The tin oxide gas sensor and its applications”, Sensors & Actuators,5, 29-42.
  • Dai1, Z. R., Pan, Z. W., Wang, Z. L., 2003. “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Func. Mater. 13, 9-24.
  • Martel, A., Caballero B. A., Quintana, P., Bartolo P. P., Peña, J. L., 2007. “X-ray study of tin oxide films obtained by reactive DC sputtering froma metallic tin target in pure oxygen plasma” Surf. Coat. Technol. 201, 4659-4665.
  • Souza, A. E. D., Monterio, S. H., Santilli, C. V., Pulcinelli, S. H. 1997. "Electrical and optical characteristics of SnO2 thin films prepared by dip coating from aqueous colloidal suspensions", J. Mater. Sci.: Mater. Elec. 4, 265-270.
  • Thangaraju, B. 2002. "Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor", Thin Solid Films 402, 71-78.
  • Batzill, M., Diebold, U. 2005. "The surface and materials science of tin oxide", Prog.Surf. Sci.; 78, 47-154
  • Cai, D., Su, Y., Chen, Y., Jiang, J., He, Z., Chen, L. 2005. "Synthesis and photoluminescence properties of novel SnO2 asterisk-like nanostructures", Chen Mater. Lett. 59, 1984-1988.
  • Melvin,S. F., Carl , E. C., Scott, E. W. 1966. "Thermodynamics of Binary Alloys. II. The Lithium-Tin System", J. Phys. Chem. 70, 3042-3045.
  • John, W., Huggins, R. A. 1981. "Thermodynamic Study of the Lithium‐Tin System", Electrochem. Soc. 128, 1181-1187.
  • Courtney, I. A., Tse, J. S., Haffner, J.,Dahn, J. R. 1998. "Ab initio calculation of the lithium-tin voltage profile", Phys. Rev. B. 58, 15583-15588.
  • Chouvin, J., Oliver, F. J., Jumas, J-C., Simon, B., Godiveau O. 1999. "119Sn Mo¨ssbauer study of Li Sn alloys prepared electrochemically", Phys. Lett. 308, 413-420.
  • Dunlap,, R. A., Small, D. A., MacNeil, D. D., Obrovac, M.N., Dahn, J. R., 1999. "A Mössbauer effect investigation of the Li–Sn system", J.Alloy Compd. 289, 135-142.
  • Courtney, I. A., Dahn,J. R. 1997. "Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass", J. Electrochem. Soc. 144, 2943-2948.
  • Idota, Y., Kubota, T., Matsufuj, A., Maekawa, Y.,Miyasaka, T. 1997. "Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material", Science. 276, 1395-1397.
  • Santos, P. J., Brousse, T., Brousse, Schleich, D. 2000. "Search for suitable matrix for the use of tin-based anodes in lithium ion batteries", Solid State Ionics, 135, 87-93.
  • Li, H., Huang, X., Chen, L. J. 1999. "Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries", J.Power Sources, 81-82, 340-345.
  • Chouvin, J.,Liver F. J., Jumas, J. C., Simon, B., Mardigal, F. J. F. 2000. "SnO reduction in lithium cells: study by X-ray absorption, 119Sn Mössbauer spectroscopy and X-ray diffraction", J. Electroanal. Chem. 494, 136-146.
  • Patil, A., Patil, V., Shin, D., Choi, J., Paik, D., Yoon, S-J. 2008. "Issue and challenges facing rechargeable thin film lithium batteries", Mater. Res. Bull., 43, 1913-1942.
  • Wang. W., Datta, M. K., Kumta, P. N. 2007. "Silicon-based composite anodes for Li-ion rechargeable batteries", J. Mater. Chem., 17, 3229-3237.
  • Maranchi, P., Hepp, A. F., Evans, A. G., Nuhfer, N. T., Kumta, P. N. 2006. "Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries" J. Electrochem. Soc.,153, A1246-A1253.
  • Ohara, S., Suzuki, J., Sekine, K., Takamura, T. 2003. "Li insertion/extraction reaction at a Si film evaporated on a Ni foil", J. Power Sources, 119, 591-596.
  • Graetz, J., Ahn, C. C., Yazami, R., Fultz, B. 2003. "Highly Reversible Lithium Storage in Nanostructured Silicon", Electrochem. Solid State Lett., 2003, 6, A194-A197.
  • Gao, B., Sinha, S., Fleming , L. Zhou,, O. 2001. "Alloy Formation in Nanostructured Silicon", Adv. Mater., 13, 816-819.
  • Chan, C. K., Peng, H., Liu, G., Mcllwrath, K., Zhang X. F., Huggins, R. A., Huggins, Cui, Y. 2008. "High-performance lithium battery anodes using silicon nanowires" Nat. Nanotechnol., 3, 31-35.
  • Chan, C. K., Ruffo, R., Hong, S. S., Huggins, R. A., Cui, Y. 2009. "Structural and electrochemical study of the reaction of lithium with silicon nanowires", J., Power Sources, 189, 34-39.
  • Nanda, J., Datta, M., Remillard,, J. T., O’Neill, A., Kumta,, P. N. 2009. "In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode", Electrochem. Commun., 11, 235-237.
  • Kim, H., Han, B., Choo, J., Cho, J. 2008. "Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries", Angew. Chem., 47, 10151-10154.
  • Chan, C. K., Zhang, X. F., Cui, Y. 2008. "High Capacity Li Ion Battery Anodes Using Ge Nanowires", Nano Lett., 8, 307-309.
  • Cui, L.-F., Ruffo, R., Chan, C. K., Peng, H., Cui, Y. 2009. "Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes", Nano Lett., 9, 491-495.
  • Shimizu, T., Xie, T., Nishikawa, J., Shinbubara, S., Senz, S., Gösele, U. 2007. "Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template", Adv. Mater., 19, 917-920.
  • Kasavajjula, U., Wang,, C., Appleby, A. J. 2007. "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells", Journal of Power Sources 163, 1003-1039.
  • Dimow, N., Fukuda, K., Umeno, T., Kugino, S., Yoshio, M. 2005. "Characterization of carbon-coated silicon: Structural evolution and possible limitations", J. Power Sources, 114, 88-95.
  • Liu, W. R., Wang, J. H., Wu, H. C., Shieh, D. T., Yang, M. H., Wu, N. L. 2005. "Electrochemical Characterizations on Si and C-Coated Si Particle Electrodes for Lithium-Ion Batteries", J. Electrochem. Soc., 152, A1719-A1725.
  • Winter, M., Appel, W. K., Evers, B., Hodal, T., Moller, K.-C., Schneider, I., Watcher, M., Wagner, M. R., Wrodnigg, G. H., Besebhard, J. O. 2001. "Studies on the Anode/Electrolyte Interfacein Lithium Ion Batteries", Monatshefte fur Chemie,132, 473-486.
  • Ng, S.H., Wang, J., Wexler, D., Konstantinov, K., Guo, Z.P., Liu, H.K. 2006. "Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries" Angew., Chem. Int. Ed., 45, 6896-6899.
  • Li, H., Huang, X., Chen, L., Zhou, G., Zhang, Z., Yu, D., Mo, Y. J., Pei,, N. 2000. "The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature" Solid State Ionics, 135, 181-191.
  • Kwon, Y., Park, G., S., Cho, J. 2007. "Synthesis and electrochemical properties of lithium-electroactive surface-stabilized silicon quantum dots", Electrochim. Acta, 52, 4663-4668.
  • Kim, H., Cho, J. 2008. "Superior Lithium Electroactive Mesoporous Si@Carbon Core−Shell Nanowires for Lithium Battery Anode Material", Nano Lett., 8, 3688-3691.
  • Cui L.F., Hu, L., Choi, J. W., Cui, Y. 2010. "Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries", ACS Nano, 3671-3678.
  • Chou, S. L., Zhao, Y., Wang, J. Z., Chen, Z. X., Liu, H. K., Dou, S. X. 2010. "Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries", J. Phys. Chem. C,, 114, 15862-15867
  • Juchen, G., Xilin, C., Chunsheng, W. 2010. “Carbon scaffold structured silicon anodes for lithium-ion batteries” J. Mater. Chem., 20, 5035-5040.
  • Xu, W., Flake, J. C. 2010. "Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells", J. Electrochem. Soc., 157, A41-A45.
  • Chou, S. L., Wang, J. Z., Choucair, M., Liu, H. K., Stride, J. A., Dou, S. X. 2010. "Enhanced reversible lithium storage in a nanosize silicon/graphene composite", Electrochem. Commun., 12, 303-306.
  • Lee, J. K., Smithi K. B., Hayner, C. M., Kung, H. H.. 2010. "Silicon nanoparticles– graphene paper composites for Li ion battery anodes", Chem. Commun., 46, 2025-2027.
  • Wang, W.,Kumta, P. N. 2010. "Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes", ACS Nano, 4, 2233-2241.
  • Kim, M. H., Kim, Y. J., Kim, J. Y., Lee, Y. K., Ascencio, A., Park, J. W. 2007. "Electrochemical characteristics of Si/Mo multilayer anode for Li ion batteries", Revista Mexicana De F´isica, 53, 17-20.
  • Hwang, C. M., Lim, C. H., Yang, J. H., Park, J. W. 2009. "Electrochemical properties of negative SiMox electrodes deposited on a roughened substrate for rechargeable lithium batteries", Journal of Power Sources 194, 1061-1067.
  • Park, Y. J., Kim, J. G., Kim, M. K., Chung, H. T., Um, W. S., Kim, M. H., Kim, H. G. 1998. "Fabrication of LiMn2O4 thin films by sol–gel method for cathode materials of microbattery", Journal of Power Sources,76, 41-47.
  • Park, Y. J., Kim, J.G., Kim, M. K., Chung, H. T., Kim, H. G. 2000. "Preparation of LiMn2O4 thin films by a sol–gel method", Solid State Ionics 130, 203-214.
  • Michalska, M., Lipinska, L., Diduszko, R., Mazurkiewicz, M., Malolepszy, A., Stobinski, L., Kurzydlowski, K. J. 2011. "Chemical syntheses of nanocrystalline lithium manganese oxide spinel", Phys. Status Solidi, 7–8, 2538-2541.
  • Zhu, J., Zeng, K., Lu, L. 2012. "Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries ", Electrochimica Acta, 68, 52-59.
  • Sun, Y.-K., Jin, S.-H. 1998. "Synthesis and electrochemical characteristics of spinel phase LiMn2O4-based cathode materials for lithium polymer batteries", J. Mater. Chem., 8(11), 2399-2404.
  • Park, Y. J., Kim, J. G., Kim, M. K., Kim, M, H. G., Chung, G, H. T., Park, Y. 2000. "Electrochemical properties of LiMn2O4 thin films: suggestion of factors for excellent rechargeability", Journal of Power Sources, 87, 69-77.
  • Xiao, L., Guo, Y., Qu, D., Deng, B., Liu, H., Tang, D. 2013. "Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials", Journal of Power Sources, 225, 286-292.
  • Yue, H., Huang, X., Lv, D., Yang, Y. 2009. "Hydrothermal synthesis of LiMn2O4/C composite as a cathode for rechargeable lithium-ion battery with excellent rate capability", Electrochimica Acta, 54, 5363-5367.
  • Luo, J., Cheng, L., Xia, Y. 2007. "LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability", Electrochemistry Communications, 9, 1404-1409.
  • Tang, S.B., Xia, H., Lai, M. O., Lu, L. 2008. "Characterization of LiMn2O4 thin films grown on Si substrates by pulsed laser deposition", J. Alloys Compd., 449, 322-325.
  • Xu, B., Meng, S. 2010. "Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methods", Journal of Power Sources, 195, 4971-4976.
  • Zhao, X., Reddy, M. V., Liu, H., Ramakrishna, G. V., Rao, S., Chowdari, B. V. R.. 2012." Nano LiMn2O4 with spherical morphology synthesized by a molten salt method as cathodes for lithium ion batteries", RSC Advances, 2, 7462-7469.
  • He, B.-L., Zhou, W.-J., Liang, Y. Y., Bao, S.-J., Li, H.-L. 2006. "Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method", Journal of Colloid and Interface Science, 300, 633-639.
  • Xia, Y., Yoshio, M. 1996. "An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds", J. Electrochem. Soc., 143, 825-833.
  • Xia, H., Ragavendran, K. R., Xie, J., Lu, L. 2012. "Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries", Journal of Power Sources, 212, 28-34.
  • .Wang, L., Huang, Y., Jiang, R., Jia, D. 2007. "Nano- LiFePO4 ∕ MWCNT Cathode Materials Prepared by Room-Temperature Solid-State Reaction and Microwave Heating", J. Electrochem. Soc., 154, A1015-A1019.
  • Ma, Z., Shi, J., Song, Y., Guo, Q., Zhai, G., Liu, L. 2006. "Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers", Carbon, 44, 1298-1301.
  • Ye, S. H., Lv, J. Y., Gao, X. P., Wu, F., Song, D. Y. 2004. "Synthesis and electrochemical properties of LiMn2O4 spinel phase with nanostructure", Electrochimica Acta, 49, 1623-1628.
  • Wagemaker, M., Kearley, G. J., Well, A. A. V., Mutka, H., Mulder, F. M. 2003. "Multiple Li Positions inside Oxygen Octahedra in Lithiated TiO2 Anatase", J. Am. Chem. Soc., 125, 840-848.
  • Suryakala, K., Marikkannu, K. R., Kalaignan, G. P., Vasudevan, T. 2008. "Synthesis and Electrochemical Characterization of LiMn2O4 and LiNd0.3Mn1.7O4 as Cathode for Lithium Ion Battery", Int. J. Electrochem. Sci., 3, 136-144.
  • Lee, Y. S.; Hideshima, Y.; Sun, Y. K.; Yoshio, M. 2002. "The Effects of Lithium and Oxygen Contents Inducing Capacity Loss of the LiMn2O4 Obtained at High Synthetic Temperature", J. Electroceramics, 9, 209-214.
  • Yonemura, M.; Yamada, A.; Kobayashi, H.; Tabuchi, M.; Kamiyama,T.; Kawamoto, Y.; Kanno, R. 2004. " Synthesis, structure, and phase relationship in lithium manganese oxide spinel", J. Mater. Chem., 14, 1948-1958.
  • Wu, X. M., Chen, S., Mai, F. R., Zhao, J. H., Li, C. A., Liu, W. 2013. " Effect of crystallization route on the properties of LiMn2O4 thin films prepared by spin coating", Solid State Electrochem, 17, 707-711.
  • Tu, J., Zhao, X. B., Cao, G. S., Tu, J. P., Zhu, T. J. 2006. "Improved performance of LiMn2O4 cathode materials for lithium ion batteries by gold coating", Materials Letters, 60, 3251-3254.
  • Liu, D., Liu, X., He, Z. 2007. "Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4", Journal of Alloys and Compounds, 436, 387-391.
  • Liu, H., Cheng, C., Zongquiuhu, Zhang, K. 2007. "The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries", Materials Chemistry and Physics, 101, 276-279.
  • Lucas, P., “Synthesis and characterizaiton of lithium manganese oxide cathode materials for rechargeable lithium batteries”, Doktora Tezi, Arizona State Üniversitesi, ABD, 1999.
  • Takeshi, K., Norihiro, K., Yo, K., Kumi, S., Yuichi, M., Hajime, M. 2014. “A method of separating the capacities of layer and spinel compounds in blended cathode”, Journal of Power Sources 245, 1-6.
  • Manikandan, P., Periasamy, P., Jagannathan, R. 2014. “Faceted shape-drive cathode particles using mixed hydroxy-carbonate precursor for mesocarbon microbeads versus LiNi1/3Mn1/3Co1/3O2 Li-ion pouch cell”, Journal of Power Sources 245, 501-509.
  • Sihui, W., Jiong, Y., Xiaobiao, W., Yixiao, L., Zhengliang, G., Wen, W., Min, L., Jihui, Y., Yong, Y. 2014. “Toward high capacity and stable manganese-spinel electrode materials: A case study of Ti-substituted system”, Journal of Power Sources 245, 570-578.
  • Zhu, J., Zeng, K., Lu, L. 2012. “Cycling effects on surface morphology, nanomechanical and interfacial reliability of LiMn2O4 cathode in thin film lithium ion batteries”, Electrochimica Acta, 68, 52-59.
  • Jinkui, F., Li, L. 2013. “A novel bifunctional additive for safer lithium ion batteries”, Journal of Power Sources 243, 29-32.
  • Hwang, J. T., Park, S. B., Park, C. K., Jang, H. 2011. “The Sintering temperature effect on electrochemical properties of LiMn2O4”, Bull. Korean Chem. Soc., 32, 3952-3958.
  • Xiao, L., Guo, Y., Qu, D., Deng, B., Liu, H., Tang, D. 2013. “Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials”, Journal of Power Sources, 225, 286-292.
  • Xianyan, Z., Mimi, C., Hongli, B., Changwei, S., Lili, F., Junming, G. 2014. “Preparation and electrochemical properties of spinel LiMn2O4 prepared by solid-state combustion synthesis”, Vacuum, 99, 49-55.
  • Xianzhong, S., Xiong, Z., Bo, H., Haitao, Z., Dacheng, Z., Yanwei, M., “(LiNi0.5Co0.2Mn0.3O2+AC)/graphite hybrid energy storage device with high specific energy and high rate capability”, Journal of Power Sources 243, 361-368.
  • Jianbing, J., Ke, D., Yanbing, C., Zhongdong, P., Guorong, H., Jianguo, D. 2013. “Syntheses of spherical LiMn2O4 with Mn3O4 and its electrochemistry performance”, Journal of Alloys and Compounds, 577 138-142.
  • Xu, B., Meng, S. 2010. “Factors affecting Li mobility in spinel LiMn2O4—A first-principles study by GGA and GGA+U methods”, Journal of Power Sources, 195, 4971-4976.
  • Zhao, X., Reddy, M. V., Liu, H., Ramakrishna, G. V., Rao, S., Chowdari, B. V. R. 2012. “Nano LiMn2O4 with spherical morphology synthesized by a molten salt method as cathodes for lithium ion batteries”, RSC Advances, 2, 7462-7469.
  • Zhu, W., Liu, D., Trottier, J., Gagnon, C., Mauger, A., Julien, C.M., Zaghib, K. 2013. “In-situ X-ray diffraction study of the phase evolution in undoped and Cr-doped LixMn1.5Ni0.5O4 (0.1≤x≤1.0) 5-V cathode materials”, Journal of Power Sources, 242, 236-243.
  • Ippei, K., Kengo, O., Atsutomo, N., Yoshiyuki, Y. 2013. “Thermodynamic analysis using first-principles calculations of phases and structures of LixNi0.5Mn1.5O4 (0≤x≤1)”, Journal of Power Sources, 241, 1-5.
  • Xia, H., Ragavendran, K. R., Xie, J., Lu, L. 2012. “Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries”, Journal of Power Sources, 212, 28-34.
  • Shi, S.J., Tu, J.P., Tang, Y.Y., Liu, X.Y., Zhao, X.Y., Wang, X.L., Gu, C.D. 2013. “Morphology and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials treated in molten salts”, Journal of Power Sources, 241, 186-195.
  • Jianhong, L., Zhaoqin, S., Jiaona, X., Hongyu, C., Ningning, W., Borong, W. 2013. “Synthesis and electrochemical properties of LiNi0.5−xCuxMn1.5−yAlyO4 (x=0, 0.05, y= 0, 0.05) as 5 V spinel materials”, Journal of Power Sources, 240, 95-100.
  • Yong, N.J., Prasanna, K., Suk, J.P., Chang, W.L. 2013. “Characterization of Li-rich xLi2MnO3•(1−x)Li[MnyNizCo1−y−z]O2 as cathode active materials for Li-ion batteries”, Electrochimica Acta, 108, 32-38.
  • Elena, V., Jose, M.R., Maria, C.G-A., Domingo, G., Erika, S., Jose, M.A. 2013. “Effect of composition, sonication and pressure on the rate capability of 5 V-LiNi0.5Mn1.5O4 composite cathodes”, Electrochimica Acta, 108, 175-181.
  • Tu, J., Zhao, X. B., Cao, G. S., Tu, J. P., Zhu, T. J. 2006. “Improved performance of LiMn2O4 cathode materials for lithium ion batteries by gold coating”, Materials Letters, 60, 3251-3254.
  • Choi, H.S., Lee, J. G., Lee H. Y., Kim, S. W., Park, C. R. 2010. “Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries”, Electrochimica Acta, 56, 790–796.
  • Kasavajjula, Wang, C., Appleby, A. J. 2007. “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”, Journal of Power Sources, 163, 1003–1039.
  • Dimov, N., Kugino, S., Yoshio, M., “Mixed silicon–graphite composites as anode material for lithium ion batteries Influence of preparation conditions on the properties of the material”, Journal of Power Sources, 136, 108–114.
  • Lee, J. K., Smith, K. B., Hayner, C. M., Kung, H. H. 2010. “Silicon nanoparticles– graphene paper composites for Li ion battery Anodes”, Chem. Commun., 46, 2025– 2027.
  • Wang, W., Kumta, P. N. 2007. “Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries”, Journal of Power Sources, 172, 650– 658.
  • Datta, M. K., Kumta, P. N., 2006. “Silicon and carbon based composite anodes for lithium ion batteries”, Journal of Power Sources, 158, 557–563
  • Zhang, Y., Zhang, X. G., Zhang, H. L., Zhao, Z. G., Li, F., Liu, C., Cheng, H. M. 2006. “Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries”, Electrochimica Acta, 51, 4994–5000.
  • Wang, X., Wen, Z., Liu, Y., Xu, X., Lin, J. 2009. “Preparation and characterization of a new nanosized silicon–nickel–graphite composite as anode material for lithium ion batteries”, Journal of Power Sources, 189, 21–126.
  • Datta, M. K., Kumta, P. N. 2006. “Silicon and carbon based composite anodes for lithium ion batteries”, Journal of Power Sources, 158, 557–563.
  • Guo, J., Sun, A., Chen, X., Wang, C. 2011. “Manivannan A., Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy”, Electrochimica Acta, 56, 3981–3987.
  • Daoush, W. M. 2008. “Processıng and Characterızatıon of CNT/Cu Nanocomposıtes by Powder Technology”, Powder Metallurgy and Metal Ceramics, 47, 531-537.
  • Park, W. I., Yoo, J., Kim, D. W., Yi, G. C. 2006. “Fabrication and Photoluminescent Properties of Heteroepitaxial ZnO/Zn0.8Mg0.2O Coaxial Nanorod Heterostructures”, J. Phys. Chem. B, 110, 1516-1519.
  • Chakrapani, V., Rusli, F., Filler, M. A., Kohl, P. A. 2012. “Silicon nanowire anode: Improved battery life with capacity-limited cycling”, Journal of Power Sources, 205, 433–438.
  • Yue, L., Zhong, H., Zhang, L. 2012. “Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process”, Electrochim. Acta, 76, 326-332.
  • Chen, W. X., Tu, J. P., Wang, L. Y., Gan, H. Y., Xu, Z. D., Zhang X. B. 2003.” Tribological application of carbon nanotubes in a metal-based composite coating and composites” Carbon 41, 215-222.
  • Ng, S. H., Wang, J., Wexler, D., Chew, S. Y., Liu, H. K. 2007. “Amorphous Carbon-Coated Silicon Nanocomposites:  A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries”, J. Phys. Chem. C, 111, 11131-11138.
  • Chou, S. L., Zhao, Y., Wang, J. Z., Chen, Z. X., Liu, H. K., Dou, S. X. 2010. “Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries”, J. Phys. Chem C., 114, 15862-15867.
  • Eom, J. Y., Park, J. W, Kwon, H. S., Rajendran, S. 2006. “Electrochemical Insertion of Lithium into Multiwalled Carbon Nanotube/Silicon Composites Produced by Ballmilling”, J. Electrochem. Soc., 153, A1678-A1684.
  • Ge, M., Rong, J., Fang, X., Zhou, C. 2012. “Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life”, Nano Lett., 12, 2318-2323.
  • Xu, Y. H., Yin, G. P., Cheng, X. Q., Zuo, P. J. 2011. “Enhanced lithium storage performance of silicon anode via fabricating into sandwich electrode ”, Electrochim. Acta, 56, 4403-4407.
  • Shen, L., Guo, X., Fang, X., Wang, Z., Chen, L. 2012. “Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries”, J. Power Sources, 213, 229-232.
  • Jiang, T., Zhang, S., Qiu, X., Zhu, W., Chen, L. 2007. “Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery”,Electrochem. Commun., 9, 930-934.
  • Wang, X., Wen, Z., Liu, Y., Huang, Y., Wen, T. L. 2011. “Development and characterization of a novel silicon-based glassy composite as an anode material for Li-ion batteries”, Solid State Ionics, 192, 330-334.
  • Aurbach, D., Markovsky, B., Weissman, I., Levi, E., Eli, Y. E. 1999 “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries” Electrochim. Acta, 45, 67-86.
  • Hwang, C. M., Park, J. W. 2011 “Electrochemical properties of Si–Ge–Mo anode composite materials prepared by magnetron sputtering for lithium ion batteries” Electrochim. Acta, 56, 6737-6747.
  • Yuea, L., Zhonga H., Zhang L. 2012. “Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process”, Electrochimica Acta, 76, 326-332.
  • Cetinkaya T., Guler M.O., Akbulut H. 2013. “Enhancing electrochemical performance of silicon anodes by dispersing MWCNTs using planetary ball milling”, Microelectronic Engineering 108, 169-176.
  • Spitalsky, Z., Aggelopoulos, C., Tsoukleri, G., Tsakiroglou, C., Parthenios, J., Georga, S., Krontiras, C., Tasis, D., Papagelis, K., Galiotis, C. 2009. “The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films”, Mater. Sci. Eng. B, 165, 135-138.
  • Prokudina, N.A., Shishchenko, E.R., Joo, O.S., Hyung, K.H., Han, S.H. 2005. “A carbon nanotube film as a radio frequency filter”, Carbon, 43, 1815-1819.
  • Knapp, W., Schleussner, D. 2002. “Carbon Buckypaper field emission investigations” Vacuum, 69, 333-338.
  • Chou, S., Wanga, J., Chew, S., Liu, H., Dou, S. 2008. “Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors”, Electrochem. Commun. 10, 1724-1727.
  • Li, J., Zhao, Y., Guan L. 2010.” Lithium storage in single-walled carbon nanotubes” Electrochem. Commun., 12, 592-595.
  • E. G. Rakov, Chemistry of Carbon Nanotubes on Carbon Materials, Vol. 1, p. 82, Yury Gogotsi (Taylor and Francis Group NW 2006).
  • Dillon, A. C., Gennett, T., Jones, K. M., Alleman, J. L., Parilla, P. A., Heben, M. J. 1999. “A Simple and Complete Purification of Single-Walled Carbon Nanotube Materials” Advanced Materials, 11, 1354-1358.
  • Chen, X.H. , Chen, C.S., Chen, Q., Cheng, F.Q., Zhang, G., Chen, Z.Z. 2002 “Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD”, Materials Letters, 57, 734– 738.
  • Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis C. 20080 “Chemical oxidation of multiwalled carbon nanotubes”, Carbon 46, 833 –840.
  • Liu, L., Qin, Y., Guo, Z., Zhu, D. 2003. “Reduction of solubilized multi-walled carbon nanotubes”, Carbon, 41, 331–335.
  • Goyanes, S., Rubiolo, G.R., Salazar, A., Jimeno, A., Corcuera, M.A., Mondragon, I. 2007. “Carboxylation treatment of multiwalled carbon nanotubes monitored byinfrared and ultraviolet spectroscopies and scanning probe microscopy”, Diamond & Related Materials, 16, 412–417.
  • Stobinski, L., Lesiak, B., Kover, L., Toth, J., Biniak, S., Trykowski, G., Judeke J. 2010. “Multiwall carbon nanotubes purification and oxidation by nitric acid studied bythe FTIR and electron spectroscopy methods”, Journal of Alloys and Compounds, 501, 77–84.
  • Osorio, A.G., Silveira I.C.L., Bueno, V.L., Bergmann, C.P. 2008 “H2SO4/HNO3/HClFunctionalization and its effect on dispersion of carbonnanotubes in aqueous media”, Applied Surface Science, 255, 2485–2489.
  • Casas, C., Li, W. 2012. “A review of application of carbon nanotubes for lithium ion battery anode material”. Journal of Power Sources, 208, 74-85.
  • Noerochim, L, Wang, J.Z., Chou, S.L., Wexler, D., Liu, HK. 2012. “Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries”. Carbon, 50, 1289-1297.
  • Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wagberg, L., Cui, Y. 2012. “Silicon-conductive nanopaper for Li-ion batteries”. Nano Energy, 2, 138-145.
  • Yu, C., Li, X., Ma, T., Rong, J., Zhang, R., Shaffer. J,, An, Y., Liu, Q., Wei, B., Jiang, H. 2012. “Silicon thin films for high-performance lithium ion batteries with effective stress relaxation”. Advance Energy Materials, 2, 68-73.
  • Xu, W., Flake, J.C. 2010. “Composite silicon nanowire anodes for secondary lithium ion cells”. Journal of the Electrochemical Society, 157(1), A41-A45.
  • Cui, L.F., Hu, L., Choi, J.W., Cui, Y. 2010. “Light-Weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries”. American Chemical Society, 4, 3671-3678.
  • Lv, R., Yang, J., Wang, J., NuLi, Y. 2011. “Electrodeposited porous-microspheres Li– Si films as negative electrodes in lithium-ion batteries”. Journal of Power Sources 196, 3868-3873.
  • Kasavajjula, U., Wang, C., Appleby, A.J. 2007. “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”. Journal of Power Sources, 163, 1003-1039.
  • Baranchugov, V., Markevich, E., Pollak, E., Salitra, G., Aurbach, D. 2007. “Amorphous silicon thin films as high capacity anodes for Li-ion batteries in ionic liquid electrolytes”. Electrochemistry Communications, 9, 796-800.
  • Lee, K.L., Jung, J.Y., Lee, S.W., Moon, H.S., Park, J.W. 2004. “Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries”. Journal of Power Sources, 129, 270-274.
  • Chen, L.B., Xie, J.Y., Yu, H.C., Wang, T.H. 2009 “An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries”. J. Appl. Electrochem 39, 1157-1162.
  • Krivchenko, V.A., Itkis, D.M., Evlashin, S.A., Semenenko, D.A., Goodilin, E.A., Rakhimov, A.T., Stepanov, A.S., Suetin, N.V., Pilevsky, A.A., Voronin, P.V. 2012. “Carbon nanowalls decorated with silicon for lithium-ion batteries”. Carbon, 50, 1438-1442.
  • Chipara, D.M., Chipara, A.C., Chipara, M. 2011. “Raman spectroscopy of carbonaceous materials: a concise review. Spectroscopy; 26(10), 2-7.
  • Zhang, Y.Q., Xia, X.H., Wang, X.L., Mai, Y.J., Shi, S.J., Tang, Y.Y., Li, L., Tu, J.P. 2012. “Silicon/graphene-sheet hybrid film as anode for lithium ion batteries”.Electrochemistry Communications, 23, 17-20.
  • Lee, S.F., Chang, Y.P., Lee, L.Y. 2011. “Synthesis of carbon nanotubes on silicon nanowires by thermal chemical vapor deposition”. New Carbon Materials, 26(6), 401-407.
  • Epur, R., Ramanathan, M., Beck, F.R., Manivannan, A., Kumta, P.N. 2012. “Electrodeposition of amorphous silicon anode for lithium ion batteries”. Materials Science and Engineering B, 177, 1157-1162.
  • Kulova, T.L., Skundin, A.M., Pleskov, Y.V., Terukov, E., Kon’kov, O. 2007. “Lithium insertion into amorphous silicon thin-film electrodes”. Journal of Electroanalytical Chemistry, 600, 217-225.
  • Moon, T., Kim, C., Park, B. 2006. “Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries”. Journal of Power Sources, 155, 391-394.
  • Yue, L., Zhong, H., Zhanga, L. 2012. “Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process”. Electrochimica Acta, 76, 326-332.
  • Zhao, G., Meng, Y., Zhang, N., Sun, K. 2012. “Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes”. Materials Letters, 76, 55-58.
  • Shen, X., Mu. D,, Chen, S., Xu, B., Wu, B., Wu, F. 2013. “Si/mesoporous carbon composite as an anode material for lithium ion batteries”. Journal of Alloys and Compounds, 552, 60-64.
  • Ding, N., Xua, J., Yao, Y.X., Wegner, G., Fang, X., Chen, C.H., Lieberwirth, I. 2009. “Determination of the diffusion coefficient of lithium ions in nano-Si”. Solid State Ionics, 180, 222-225.
  • Osakaa, T., Momma, T., Mukoyama, D., Narab, H. 2012. “Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery”. Journal of Power Sources, 205, 483-486.
  • Klink, S., Madej, E., Ventosa, E., Lindner, A., Schuhmann, W., Mantia, F.L. 2012. “The importance of cell geometry for electrochemical impedance spectroscopy in three-electrode lithium ion battery test cells”. Electrochemistry Communications, 22, 120-123.
  • Zhang, S.S., Xu, K., Jow, T.R. 2013. “The low temperature performance of Li-ion batteries”. Journal of Power Sources 2003, 115, 137-140.
  • Andre, D., Meiler, M., Steine,r K., Wimmer, C., Guth, T.S., Sauer, D.U. 2011. “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation”. Journal of Power Sources, 196, 5334-5341.
  • Li, Q., Hu, S., Wang, H., Wang, F., Zhong, X., Wang, X. 2009. “Study of copper foam supported Sn thin film as a high-capacity anode for lithium-ion batteries” Electrochimica Acta, 54, 5884-5888.
  • Zhang, Y., Zhang, X.G., Zhang, H.L., Zhao, Z.G., Li, F., Liu, C., Cheng, H.M. 2006. “Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries” Electrochimica Acta, 51, 4994-5000.
  • Xu, W., Flake, J.C. 2010. “Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells”. Journal of The Electrochemical Society, 157, A41-A45.
  • Hwang, C.M., Lim, C.H., Yang, J.H., Park, J.W. 2009. “Electrochemical properties of negative SiMox electrodes deposited on a roughened substrate for rechargeable lithium batteries”. Journal of Power Sources, 194, 1061-1067.
  • Sethuraman,V.A., Kowolik, K., Srinivasan, V. 2011. “Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries”. Journal of Power Sources, 194, 393-398.
  • Winter, M., Besenhard, J.O. 1999. “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochimica Acta 45, 31-50.
  • Wang C., Appleby A.J., Little F. E. 2001. “Electrochemical study on nano-Sn, Li4.4Sn and AlSi0.1 powders used as secondary lithium battery anodes” Journal of Power Sources, 93, 174-185.
  • Inaba M., Uno T. Tasaka A. 2005. “Irreversible capacity of electrodeposited Sn thin film anode” Journal of Power Sources, 146, 473-477.
  • Choi W.U., Lee J.Y., Jung B.H. and Lim H.S. 2004. "Microstructure and Electrochemical Properties of a Nanometer-Scale Sn Anode for Lithium Secondary Batteries". Journal of Power Sources, 136, 154-159.
  • Park M.S., Wang G.X., Liu H.K., Dou S.X. 2006. “Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries”. Electrochimica Acta 51, 5246-5249.
  • Hu RZ, Zeng MQ, Zhu M. 2009. “Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition”. Electrochim Acta 54, 2843-2850.
  • Sheng Ke F, Huang L, Shu Cai J, Gang Sun S. 2007. “Electroplating synthesis and electrochemical properties of macroporous Sn–Cu alloy electrode for lithium-ion batteries”. Electrochim Acta 52, 6741-6747.
  • Kim, D.G. Kim, H. Sohn, H.-J. Kang, T. 2002. “Nanosized Sn–Cu–B alloy anode prepared by chemical reduction for secondary lithium batteries”. J. Power Sources 104, 221-225.
  • Tamura N, Ohshita R, Fujimoto M, Fujitani S, Kamino M, Yonezu I, 2002. Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes J. Power Sources 107, 48-55.
  • Ibl N., 1981. Proceedings of A.E.S.F. International Pulse Plating Symposium Rosemont, Illinois. 6–7.
APA Akbulut H, GÜLER M, AYDIN A, ALP A (2014). Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. , 1 - 183.
Chicago Akbulut Hatem,GÜLER MEHMET OĞUZ,AYDIN ALİ OSMAN,ALP Ahmet Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. (2014): 1 - 183.
MLA Akbulut Hatem,GÜLER MEHMET OĞUZ,AYDIN ALİ OSMAN,ALP Ahmet Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. , 2014, ss.1 - 183.
AMA Akbulut H,GÜLER M,AYDIN A,ALP A Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. . 2014; 1 - 183.
Vancouver Akbulut H,GÜLER M,AYDIN A,ALP A Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. . 2014; 1 - 183.
IEEE Akbulut H,GÜLER M,AYDIN A,ALP A "Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi." , ss.1 - 183, 2014.
ISNAD Akbulut, Hatem vd. "Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi". (2014), 1-183.
APA Akbulut H, GÜLER M, AYDIN A, ALP A (2014). Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. , 1 - 183.
Chicago Akbulut Hatem,GÜLER MEHMET OĞUZ,AYDIN ALİ OSMAN,ALP Ahmet Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. (2014): 1 - 183.
MLA Akbulut Hatem,GÜLER MEHMET OĞUZ,AYDIN ALİ OSMAN,ALP Ahmet Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. , 2014, ss.1 - 183.
AMA Akbulut H,GÜLER M,AYDIN A,ALP A Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. . 2014; 1 - 183.
Vancouver Akbulut H,GÜLER M,AYDIN A,ALP A Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi. . 2014; 1 - 183.
IEEE Akbulut H,GÜLER M,AYDIN A,ALP A "Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi." , ss.1 - 183, 2014.
ISNAD Akbulut, Hatem vd. "Mobil ve hareketsiz enerji depolama uygulamaları için MWCNT takviyeli nanokompozit li-iyon pil elektrotlarının geliştirilmesi". (2014), 1-183.