Yıl: 2022 Cilt: 10 Sayı: 8 Sayfa Aralığı: 1334 - 1341 Metin Dili: İngilizce DOI: 10.24925/turjaf.v10i8.1334-1341.5318 İndeks Tarihi: 03-10-2022

Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications

Öz:
In the study carried out, obtaining environmentally friendly biopolymers from sustainable sources and their usability as biomaterials were investigated. For this purpose, collagen from bovine achilles tendon, fibroin from silkworm cocoon, sodium alginate from brown sea algae and bioactive components from gel of aloe vera were isolated and purified. Product efficiency were calculated as 79.8% (w/w), 69,49% (w/w from cocoons), 35.1% (w/w) and 1% (w/v dry weight in gel) for collagen, fibroin, sodium alginate and aloe vera, respectively. Tissue scaffolds were prepared from these biomolecules by freeze drying method. However, aloe vera gel could not maintain the structural integrity in solid form and could not form a 3-dimensional scaffold. FTIR analyzes of fibroin, collagen and sodium alginate scaffolds showed that the products were obtained pure and the chemical structure was preserved during lyophilization. Surface analyzes with SEM, on the other hand, supported that the scaffolds are suitable for tissue engineering applications. As a result, it was determined that bioactive polymers were obtained from sustainable sources, generally at room conditions, with high yield, instead of petroleum-derived polymers, and they could be used as biomaterials. Obtaining biomolecules from sustainable sources in this way has significant potential in solving both the raw material problem and the environmental pollution caused by polymers.
Anahtar Kelime:

Biyomalzeme Uygulamaları İçin Sürdürülebilir Kaynaklardan Biyopolimerlerin İzolasyonu ve Saflaştırma Adımları

Öz:
Yürütülen çalışmada sürdürülebilir kaynaklardan çevre dostu biyopolimerlerin elde edilmesi ve biyomalzeme olarak kullanılabilirliği araştırılmıştır. Bu amaçla, sığır aşil tendonundan kollajen, ipek böceği kozasından fibroin, kahverengi deniz alglerinden sodyum alginat ve aloe vera jelinden biyoaktif bileşenler izole edilerek saflaştırılmıştır. Ürün verimi kollajen, fibroin, sodium alginat ve aloe vera için sırasıyla %79.8 (w/w), %69.49 (w/w kozadan), %35.1 (w/w) ve %1 (w/v jeldeki kuru miktar) oranında hesaplanmıştır. Bu biyomoleküllerden dondurarak kurutma yöntemi ile doku iskeleleri hazırlanmıştır. Ancak, aloe vera jeli katı formada yapı bütünlüğünü koruyamayarak 3- boyutlu iskele yapı oluşturamamıştır. Fibroin, kollajen ve sodyum alginat iskelelerin FTIR analizleri ürünlerin saf olarak elde edildiğini, liyoflizasyon sırasında kimyasal yapının korunduğunu göstermiştir. SEM ile yüzey analizleri ise iskelelerin doku mühendisliği uygulamaları için uygun olduğunu desteklemiştir. Sonuç olarak, petrol kaynaklı polimer yerine sürdürülebilir kaynaklardan, genel olarak oda şartlarında bioaktif polimerler yüksek verimle elde edilmiş ve biyomalzeme olarak kullanılabilecekleri belirlenmiştir. Biyomoleküllerin bu şekilde sürdürülebilir kaynaklardan elde edilmesi hem hammadde sorununun hem de polimer kaynaklı çevresel kirliliğin çözümünde önemli potansiyele sahiptir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahlawat KS, Khatkar BS. 2011. Processing, Food Applications and Safety of Aloe Vera Products: A Review. Journal of Food Science and Technology, 48(5): 525-533. Doi: 10.1007/s13197-011-0229-z
  • Atiwesh G, Mikhael A, Parrish CC, Banoub J, Le TAT. 2021. Environmental Impact of Bioplastic Use: A Review. Heliyon, 7(9): e07918. Doi: 10.1016/j.heliyon.2021.e07918
  • Balart R, Garcia-Garcia D, Fombuena V, Quiles-Carrillo L, Arrieta MP. 2021. Biopolymers from Natural Resources. Polymers, 13, 2532. Doi: 10.3390/polym13152532
  • Binder-Markey BI, Broda NM, Lieber RL. 2020. Intramuscular Anatomy Drives Collagen Content Variation Within and Between Muscles [Original Research]. Frontiers in Physiology, 11. Doi: 10.3389/fphys.2020.00293
  • Bozzi A, Perrin C, Austin S, Arce Vera F. 2007. Quality and Authenticity of Commercial Aloe Vera Gel Powders. Food Chemistry, 103(1): 22-30. Doi: 10.1016/j.foodchem. 2006.05.061
  • Buckley MR, Evans EB, Matuszewski PE, Chen YL, Satchel LN, Elliott DM, Soslowsky LJ, Dodge GR. 2013. Distributions of Types I, II and III Collagen by Region in The Human Supraspinatus Tendon. Connective Tissue Research, 54(6): 374-379. Doi: 10.3109/03008207.2013.847096
  • Chandegara VK, Varshney AK. 2013. Aloe Vera L. Processing and Products: A Review. Int. J. Med. Aromat. Plants, 3(4): 492-506.
  • Chee SY, Wong PK, Wong CL. 2011. Extraction and Characterisation of Alginate from Brown Seaweeds (Fucales, Phaeophyceae) Collected from Port Dickson, Peninsular Malaysia. Journal of Applied Phycology, 23(2): 191-196. Doi: 10.1007/s10811-010-9533-7
  • Dass RS, Anand KR, Saha D, Dhinakar JE, Thorat P. 2022. Polysaccharides of Biomedical Importance from Genetically Modified Microorganisms. In: Oliveira, J.M, Radhouani, H, Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. Doi: 10.1007/978-3-030-42215-8_38
  • Dennis MJ. 2003. A Guide to The Seaweed Industry. In F. A. A. O. O. T. U. Nations (Ed.), A Guide to The Seaweed Industry, FAO Fisheries Technical Paper 441.
  • Ezeoha SL, Ezenwanne JN. 2013. Production of Biodegradable Plastic Packaging Film from Cassava Starch. IOSR Journal of Engineering, 3(10): 14-20.
  • Hamman JH. 2008. Composition and Applications of Aloe Vera Leaf Gel. Molecules, 13(8):1599-1616. Doi: 10.3390/molecules13081599.
  • Hu K, Lv Q, Cui F, Feng Q, Kong X, Wang H, Huang L, Li T. 2006. Biocompatible Fibroin Blended Films with Recombinant Human-Like Collagen for Hepatic Tissue Engineering. Journal of Bioactive and Compatible Polymers, 21(1): 23-37. Doi: 10.1177/0883911506060455
  • Jaramillo-Quiceno N, Álvarez-López C, Restrepo-Osorio A. 2017. Structural and Thermal Properties of Silk Fibroin Films Obtained from Cocoon and Waste Silk Fibers as Raw Materials. Procedia Engineering, 200: 384-388. Doi: 10.1016/j.proeng.2017.07.054
  • Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW. 1996. Glossary of Basic Terms in Polymer Science (IUPAC Recommendations 1996). Pure and Applied Chemistry, 68(12): 2287-2311. Doi: doi.org/10.1515/iupac.68.4008
  • Kannus P. 2000. Structure of The Tendon Connective Tissue. Scandinavian Journal of Medicine Science in Sports, 10(6): 312-320. Doi. 10.1034/j.1600-0838.2000.010006312.x
  • Liu SH, Yang RS, Al-Shaikh R, Lane J. 1995. Collagen in Tendon, Ligament, and Bone Healing: A Current Review. Clinical Orthopaedics and Related Research, 318: 265-278.
  • Narsih A. 2016. Evaluation of Bioactive Compounds of Aloe Vera Extract Using Subcritical Water Method. BTAIJ, 12(3): 113-120.
  • Ni Y, Turner D, Yates KM, Tizard I. 2004. Isolation and characterization of structural components of Aloe vera L. leaf pulp. International Immunopharmacology, 4(14): 1745-1755. Doi: 10.1016/j.intimp.2004.07.006
  • Popat V, Padhiyar N. 2013. Kinetic Study of Bechamp Process for P-Nitrotoluene Reduction to P-Toluidine. Int. J. Chem. Eng. Appl, 4(6): 401-405. Doi. 10.7763/IJCEA.2013.V4.334
  • Prochon M, Dzeikala O. 2021. Biopolymer Composites as An Alternative To Materials For The Production Of Ecological Packaging. Polymers, 13(4): 592. Doi: doi.org/10.3390/ polym13040592
  • Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ. 2017. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. International Journal of Molecular Sciences, 18(3): 237. Doi. 10.3390/ijms18030237
  • Rani M, Choudhry P, Kumar A, Chhokar V. 2021. Evaluation of Saponins in Aloe Vera by High-Performance Liquid Chromatography and Fourier Transform Infrared Spectroscopy. The Pharma Innovation Journal, 10(9): 1925- 1933.
  • Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. 2021. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 13(7): 1105. Doi. 10.3390/polym13071105
  • Sah MK, Pramanik K. 2010. Regenerated Silk Fibroin from B. Mori Silkcocoon for Tissue Engineering Applications. International Journal of Environmental Science and Development, 1(5): 404. Doi. 10.7763/IJESD.2010.V1.78
  • Saini P, Singh A, Ahmed M, Iqbal U, Srivastava U. (2021). Sustainability of Biodegradable Polymers for the Environment: An Alternative Approach for the Future. In M. Danish, & T. Senjyu (Ed.), Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development (pp. 65-87). IGI Global. Doi: 10.4018/978-1-7998-4915- 5.ch004
  • Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Banat F, Sivamani S, Sivakumar N, Hosseini- Bandegharaei A, Show PL. 2021. Biopolymers and Composites: Properties, Characterization and Their Applications in Food, Medical and Pharmaceutical Industries. Journal of Environmental Chemical Engineering, 9(4): 105322. Doi: 10.1016/j.jece.2021.105322
  • Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. 2015. Biomedical Biopolymers, Their Origin and Evolution in Biomedical Sciences: A Systematic Review. Journal of Clinical and Diagnostic Research, 9(9): ZE21. Doi: 10.7860/JCDR/2015/13907.6565
APA Mohamed S, Yazar H, Emin N (2022). Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. , 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
Chicago Mohamed Salma A. Taher,Yazar Havva,Emin Nuray Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. (2022): 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
MLA Mohamed Salma A. Taher,Yazar Havva,Emin Nuray Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. , 2022, ss.1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
AMA Mohamed S,Yazar H,Emin N Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. . 2022; 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
Vancouver Mohamed S,Yazar H,Emin N Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. . 2022; 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
IEEE Mohamed S,Yazar H,Emin N "Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications." , ss.1334 - 1341, 2022. 10.24925/turjaf.v10i8.1334-1341.5318
ISNAD Mohamed, Salma A. Taher vd. "Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications". (2022), 1334-1341. https://doi.org/10.24925/turjaf.v10i8.1334-1341.5318
APA Mohamed S, Yazar H, Emin N (2022). Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10(8), 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
Chicago Mohamed Salma A. Taher,Yazar Havva,Emin Nuray Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10, no.8 (2022): 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
MLA Mohamed Salma A. Taher,Yazar Havva,Emin Nuray Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. Türk Tarım - Gıda Bilim ve Teknoloji dergisi, vol.10, no.8, 2022, ss.1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
AMA Mohamed S,Yazar H,Emin N Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(8): 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
Vancouver Mohamed S,Yazar H,Emin N Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications. Türk Tarım - Gıda Bilim ve Teknoloji dergisi. 2022; 10(8): 1334 - 1341. 10.24925/turjaf.v10i8.1334-1341.5318
IEEE Mohamed S,Yazar H,Emin N "Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications." Türk Tarım - Gıda Bilim ve Teknoloji dergisi, 10, ss.1334 - 1341, 2022. 10.24925/turjaf.v10i8.1334-1341.5318
ISNAD Mohamed, Salma A. Taher vd. "Isolation of Biopolymers from Sustainable Sources and Purification Steps for Biomaterial Applications". Türk Tarım - Gıda Bilim ve Teknoloji dergisi 10/8 (2022), 1334-1341. https://doi.org/10.24925/turjaf.v10i8.1334-1341.5318