Yıl: 2022 Cilt: 38 Sayı: 3 Sayfa Aralığı: 159 - 167 Metin Dili: İngilizce DOI: 10.15312/EurasianJVetSci.2022.378 İndeks Tarihi: 22-10-2022

Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats

Öz:
Aim: In this study, it was aimed to investigate the efficacy of tyrosol on cardiotoxicity induced by doxorubicin. Materials and Methods: Rats were divided into 4 groups and each group included 8 rats. Groups 1 and 2 were given 1 ml of physiological saline, while groups 3 and 4 were given 20 mg/kg of tyrosol. In saline and tyrosol administrations, the oral gavage method was used. In addition, a single dose of 15 mg/kg dose of doxorubicin was administered intraperitoneally to group 2 and group 4 on the 12th day of the trial. On the 14th day of the experiment, serum and tissue samples were taken from the anesthetized rats and then euthanized. Serum creatine kinase MB and creatine kinase activities were analyzed. Heart tissues were extracted, and histological and oxidative stress characteristics were measured in these tissues. Heart tissue malondialdehyde and reduced glutathione levels, catalase and glutathione peroxidase activities were assessed spectrophotometrically. Results: Tyrosol pretreatment inhibited doxorubicin-induced increase in heart tissue malondialdehyde level (p<0.05), the decrease in reduced glutathione level and glutathione peroxidase enzyme activity, and suppressed doxorubicin-induced oxidative stress in the heart tissue. In terms of cardiac tissue catalase enzyme activity, no differences were found between the groups. Because of the reduction in oxidative damage in the heart, the serum creatine kinase MB and creatine kinase activity decreased dramatically (p<0.05). Furthermore, it was discovered that tyrosol pretreatment reduced the histopathological lesions caused by doxorubicin in cardiac tissue. Conclusion: It is thought that the administration of tyrosol may reduce the cardiotoxicity caused by doxorubicin.
Anahtar Kelime:

Ratlarda doksorubusin ile oluşturulan akut kardiyotoksisite üzerine tyrosolün etkinliğinin araştırılması

Öz:
Amaç: Çalışmada, doksorubisin ile oluşturulan kardiyotoksisite üzerine tirozolün etkinliğinin araştırılması amaçlandı. Gereç ve Yöntem: Ratlar 4 gruba ayrıldı ve her grupta 8 rat yer aldı. Grup 1 ve grup 2’ye 1 ml serum fizyolojik, grup 3 ve grup 4’e ise 20 mg/kg dozda tirozol uygulaması yapıldı. Serum fizyolojik ve tirozol uygulamalarında oral gavaj yöntemi kullanıldı. Ayrıca grup 2 ve grup 4’e denemenin 12. günü 15 mg/kg dozda ve tek doz intraperitoneal doksorubisin uygulaması yapıldı. Denemenin 14. gününde anestezi altındaki ratlardan serum ve doku örnekleri alındı ve daha sonra ötanazi edildi. Serum kreatin kinaz MB ve kreatin kinaz aktiviteleri analiz edildi. Kalp dokuları çıkarıldı ve bu dokularda histopatolojik ve oksidatif stres parametrelerine yönelik analizler yapıldı. Kalp dokusu malondialdehit ve redükte glutatyon düzeyleri ile katalaz ve glutatyon peroksidaz enzim aktiviteleri spektrofotometrik olarak belirlendi. Bulgular: Tirozol ön tedavisinin doksorubisinin neden olduğu kalp dokusu malondialdehit düzeyindeki artışı (p<0.05), redükte glutatyon düzeyi ve glutatyon peroksidaz enzim aktivitesindeki azalmaları engellediği ve doksorubisinin kalp dokusunda meydana getirdiği oksidatif stresi baskıladığı görüldü. Kalp dokusu katalaz enzim aktiviteleri açısından gruplar arasında farklılık gözlenmedi. Kalpteki oksidatif hasarın azalmasına bağlı olarak serum kreatin kinaz MB ve kreatin kinaz aktivitelerinin önemli oranda azaldığı (p<0.05) tespit edildi. Ayrıca tirozol ön tedavisinin doksorubisinin kalp dokusunda meydana getirdiği histopatolojik lezyonları engellediği belirlendi. Öneri: Tirozol uygulamasının doksorubisinin neden olduğu kardiyotoksisiteyi azaltabileceği düşünülmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aebi HI, 1983. Methods of enzymatic analysis. Catalase, 673- 686.
  • Afsar T, Razak S, Batoo KM, Khan MR, 2017. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural cardiomyocyte alterations in rats. BMC Complement Altern Med, 17(1), 1-14.
  • Ahmed AZ, Satyam SM, Shetty P, D’Souza MR, 2021. Methyl gallate attenuates doxorubicin-induced cardiotoxicityin rats by suppressing oxidative stress. Scientifica, 2021,12.
  • Akila P, Vennila L, 2016. Chlorogenic acid a dietary polyphenol attenuates isoproterenol induced myocardial oxidative stress in rat myocardium: An in vivo study. Biomed Pharmacother, 84, 208–214.
  • Alanazi AM, Fadda L, Alhusaini A, Ahmad R, et al., 2020. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in rats. Antioxidants, 9(2), 159.
  • Al-Taee H, Azimullah S, Meeran MFN, Almheiri MKA, et al., 2019. β-caryophyllene, a dietary phytocannabinoid attenuates oxidative stress, inflammation, apoptosis and prevents structural alterations of the myocardium against doxorubicin-induced acute cardiotoxicity in rats: An in vitro and in vivo study. Eur J Pharmacol, 858, 172467.
  • Ammar ESM, Said SA, El-Damarawy SL, Suddek GM, 2013. Cardioprotective effect of grape-seed proanthocyanidins on doxorubicin-induced cardiac toxicity in rats. Pharm Biol, 51(3), 339–344.
  • An JF, Li PF, Li JC, Dietz R, et al., 2009. ARC is a critical cardiomyocyte survival switch in doxorubicin cardiotoxicity. J Mol Med-Jmm, 87 (4), 401–410.
  • Asiri YA, 2010. Probucol attenuates cyclophosphamide induced oxidative apoptosis, p53 andBax signal expression in rat cardiac tissues. Oxid Med Cell Longev, 3, 308-316.
  • Barış VO, Gedikli E, Yersal N, Müftüoğlu S, et al., 2019. Protective effect of taurine against doxorubicin-induced cardiotoxicity in rats: Echocardiographical and histological findings, Amino acids. Amino Acids, 51, 649–1655.
  • Bhatt L, Joshi V, 2017. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress. J Intercult Ethnopharmacol, 6(3), 284–289.
  • Birari L, Wagh S, Patil KR, Mahajan UB, et al., 2020. Aloin alleviates doxorubicin induced cardiotoxicity in rats by abrogating oxidative stress and pro inflammatory cytokines. Cancer Chemother Pharmacol, 86, 419–426.
  • Bu Y, Rho S, Kim J, Kim MY, et al., 2007. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci Lett, 414, 218–221.
  • Cellat M, Kuzu M, İşler CT, Etyemez M, et al., 2021. Tyrosol improves ovalbumin (OVA) induced asthma in rat model through prevention of airway inflammation. Naunyn Schmiedebergs Arch Pharmacol, 394(10), 2061-2075.
  • Chandramohan R, Pari L, 2021. Antihyperlipidemic effect of tyrosol, a phenolic compound in streptozotocin-induced diabetic rats. Toxicol Mech Methods, 31(7), 507-516.
  • GandhiH, Patel VB, MistryN, PatniN, et al., 2013.Doxorubicin mediated cardiotoxicity in rats: protective role of felodipine on cardiac indices. Environ Toxicol Pharmacol, 36(3), 787–795.
  • Giampieri F, Alvarez-Suarez JM, Gasparrini M, ForbesHernandez TY, et al., 2016. Strawberry consumption alleviates doxorubicin-induced toxicity by suppressing oxidative stress. Food Chem Toxicol, 94, 128–137.
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, et al., 2010. New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidant nutrients. Food Chem Toxicol, 48, 1425–1438.
  • Guo R,Hua Y, Ren J, Bornfeldt KE, et al., 2018. Cardiomyocytespecific disruption of cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis, 9(6), 692.
  • Güvenç M, Cellat M, ÖzkanH, Tekeli İO, et al., 2019. Protective effects of tyrosol against DSS-induced ulcerative colitis in rats. Inflammation, 42, 1680–1691.
  • Halestrap AP, 2006. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans, 34, 232–237.
  • Haybara H, Goudarzi M, Mehrzadi S, Aminzadeh A, et al., 2019. Effect of gemfibrozil on cardiotoxicity induced by doxorubicin in male experimental rats. Biomed Pharmacother, 109, 530–535.
  • Ibrahim DM, Radwan RR, Abdel Fattah SM, 2017. Antioxidant and antiapoptotic effects of sea cucumber and valsartan against doxorubicin-induced cardiotoxicity in rats: The role of low dose gamma irradiation. J Photochem Photobiol, B 170, 70–78.
  • Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Jaja VS, et al., 2021. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. J Ethnopharmacol, 274, 114004.
  • Jadhav VB, Thakare VN, Suralkar AA, Naik SR, 2013. Ameliorative effect of Luffa acutangula Roxb. on doxorubicin induced cardiac and nephrotoxicity in mice. IJEB, 52(02), 149-156.
  • Kim SH, Kim KJ, Kim JH, Kwak JH, et al., 2017. Comparision of doxorubicin induced cardiotoxicity in the ICR mice of different sources. Lab Anim Res, 33(2), 165–170.
  • Kima YY, Leeb S, Kima MJ, Kanga BC, et al., 2017. Tyrosol attenuates lipopolysaccharide-induced acute lung injury by inhibiting the inflammatory response and maintaining the alveolar capillary barrier. Food Chem Toxicol, 109, 526–533.
  • Kumrala A, Giris M, Soluk-Tekkes M, Olgac V, et al., 2015. Effect of olive leaf extract treatment on doxorubicin induced cardiac, hepatic and renal toxicity in rats. Pathophysiology, 22, 117–123.
  • Lawrence RA, Burk RF, 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun, 71, 952-958.
  • Li H, Xia B, Chen W, Zhang Y, et al., 2020. Nimbolide prevents myocardial damage by regulating cardiac biomarkers, antioxidant level, and apoptosis signaling against doxorubicin induced cardiotoxicity in rats. J Biochem Mol Toxicol, e22543.
  • Liao D, Zhang C, Liu N, Cao L, et al., 2020. Involvement of neurotrophic signaling in doxorubicin induced cardiotoxicity. Exp Ther Med, 19, 1129-1135.
  • Lódi M, Priksz D, Fülöp GÁ, 2019. Advantages of prophylactic versus conventionally scheduled heart failure therapy in an experimental model of doxorubicin-induced cardiomyopathy. J Transl Med, 17, 1–16.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ, 1951. Protein measurement with the folin phenol reagent. J Biol Chem, 193, 265-275.
  • Luna LG, 1968. Manuel of histologic staining methods of the armed forces institute of pathology. McGraw-Hill Book Co, Newyork, p- 32.
  • Ma T, Kandhare AD, Mukherjee Kandhare AA, Bodhankar SL, 2019. Fisetin, a plant flavonoid ameliorates doxorubicininduced cardiotoxicity in experimental rats: the decisive role of caspase-3, COXII, cTn-I, iNOs and TNF-α. Mol Biol Rep, 46, 105–118.
  • Mantawy EM, El-Bakly WM, Esmat A, Badr AM, et al., 2014. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol, 728, 107–118.
  • McGowan JV, Chung R, Maulik A, Piotrowska I, et al., 2017. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther, 31 (1), 63–75.
  • Mohammeda HS, Hosny EN, Khadrawy YA, Magdy M, et al., 2020. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta, 1866(5), 165665.
  • Nebigil CG, D´esaubry L, 2018. Updates in anthracycline mediated cardiotoxicity. Front Pharmacol, 9. Octavia Y, Tocchetti CG, GabrielsonKL,Janssens S, et al., 2012. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol, 52, 1213–1225.
  • Oner Z, Altınoz E, Elbe H, Ekinci N, 2019. The protective and therapeutic effects of linalool against doxorubicin-induced cardiotoxicity in wistar albino rats. Hum Exp Toxicol, 38(7), 803-813.
  • Pandey KB, Rizvi SI, 2010. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev, 3(1), 2–12.
  • Pecoraro M, Ciccarelli M, Fiordelisi A, Iaccarino G, et al., 2018. Diazoxide improves mitochondrial connexin 43 expression in a mouse model of doxorubicin-induced cardiotoxicity. Int J Mol Sci, 19(3), 757.
  • Pehlivan DY, Durdagi G, Oyar EO, Akyol S, et al., 2020. The effects of melatonin and thymoquinone on doxorubicininduced cardiotoxicity in rats. Bratisl Med J, 121(10), 753- 759.
  • Placer ZA, Cushman LL, Johnson BC, 1966. Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem, 16(2), 359–364.
  • Plotnikov MB, Plotnikova TM, 2021. Tyrosol as a neuroprotector: Strong effects of a “Weak” antioxidant. Curr Neuropharmacol, 19, 434-448.
  • Rašković A, Stilinović N, Kolarović J, Vasović V, et al., 2011. The protective effects of silymarin against doxorubicin induced cardiotoxicity and hepatotoxicity in rats. Molecules, 16(10), 8601–8613.
  • Saad SY, Najjar TA, Al-Rikabi AC, 2001. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res, 43, 211– 218.
  • Sandamali JAN, Hewawasam RP, Jayatilaka KAPW, Mudduwa LKB, 2020. Cardioprotective potential of Murraya koenigii (L.) spreng. leaf extract against doxorubicin-induced cardiotoxicity in rats. eCAM, 2020, 16.
  • Sedlak J, Lindsay RH, 1968. Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem, 25, 192-205.
  • Shaker RA, Abboud SH, Assad HC, Hadi N, 2018. Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacol Toxicol, 19.
  • Sheibani M, Nezamoleslami S, Ghanesefat HF, Emami AH, et al., 2020. Cardioprotective effects of dapsone against doxorubicin induced cardiotoxicity in rats. Cancer Chemother Pharmacol, 85, 563–571.
  • Subbarao R, Ok SH, Lee S, Kang D, et al., 2018. Lipid emulsion inhibits the late apoptosis/cardiotoxicity induced by doxorubicin in rat cardiomyoblasts. Cells, 7(10), 144.
  • Sumitra M, Manikandan P, Kumar DA, Arutselvan N, et al., 2001. Experimental myocardial necrosis in rats: role of arjunolic acid on platelet aggregation, coagulation and antioxidant status. Mol Cell Biochem, 224 (1), 135–142.
  • Tahover E, Patil YP, Gabizon AA, 2015. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: Focus on liposomes. Anticancer Drugs, 26(3), 241–258.
  • Thibault SLC, Arseneault M, Longpre F, Ramassamy C, 2011. Tyrosol and hydroxytyrosol,two main components of olive oil, protect N2a cells against amyloid-b-induced toxicity. Involvement of the NF-kB signaling. Curr Alzheimer Res, 8, 543–551.
  • Thomas, SA, 2017. Chemotherapy agents that cause cardiotoxicity. US Pharm, 42(9), 24-33.
  • Tiana W, Yang L, Liu Y, He J, et al., 2020. Resveratrol attenuates doxorubicin-induced cardiotoxicity in rats by up-regulation of vascular endothelial growth factor B. J Nutr Biochem, 79, 108132.
  • Uygur R, Aktas C, Tulubas F, Alpsoy S, et al., 2014. Cardioprotective effects of fish omega-3 fatty acids on doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol, 33(4), 435–445.
  • Volkova M, Russell R, 2012. Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr Cardiol Rev, 7(4), 214–220.
  • Wan Y, Hea B, Zhu D, Wang L, et al., 2021. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch Biochem Biophys, 712, 109050.
  • Wouters KA, Kremer LC, Miller TL, Herman EH, et al., 2005. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol, 131 (5), 561–578.
  • Wu YZ, Zhang L, Wu ZX, Shan TT, et al., 2019. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cell Longev, 2019, 14.
  • Xiao NN, 2015. Effects of resveratrol supplementation on oxidative damage and lipid peroxidation induced by strenuous exercise in rats. Biomol Ther, 23(4), 374–378.
  • Yuan Y, Fan S, Shu L, Huang W, et al., 2020. Exploration the mechanism of doxorubicin-induced heart failure in rats by integration of proteomics and metabolomics data. Front Pharmacol, 11, 600561.
  • Zare MFR, Rakhshan K, Aboutaleb N, Nikbakht F, et al., 2019. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci, 232, 116623.
  • Zhang YD, Ma CY, Liu CS, Wei F, 2020. Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. Peer J, 8, e8845.
  • Zhang YY, Yib M, Huang Y, 2017. Oxymatrine ameliorates doxorubicin induced cardiotoxicity in rats. Cell Physiol Biochem, 43, 626-635.
  • Zhao L, Tao X, Qi Y, Xu L, et al., 2018. Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biol, 16, 189–198.
APA Cellat M, Etyemez M (2022). Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. , 159 - 167. 10.15312/EurasianJVetSci.2022.378
Chicago Cellat Mustafa,Etyemez Muhammed Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. (2022): 159 - 167. 10.15312/EurasianJVetSci.2022.378
MLA Cellat Mustafa,Etyemez Muhammed Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. , 2022, ss.159 - 167. 10.15312/EurasianJVetSci.2022.378
AMA Cellat M,Etyemez M Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. . 2022; 159 - 167. 10.15312/EurasianJVetSci.2022.378
Vancouver Cellat M,Etyemez M Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. . 2022; 159 - 167. 10.15312/EurasianJVetSci.2022.378
IEEE Cellat M,Etyemez M "Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats." , ss.159 - 167, 2022. 10.15312/EurasianJVetSci.2022.378
ISNAD Cellat, Mustafa - Etyemez, Muhammed. "Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats". (2022), 159-167. https://doi.org/10.15312/EurasianJVetSci.2022.378
APA Cellat M, Etyemez M (2022). Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. Eurasian Journal of Veterinary Sciences, 38(3), 159 - 167. 10.15312/EurasianJVetSci.2022.378
Chicago Cellat Mustafa,Etyemez Muhammed Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. Eurasian Journal of Veterinary Sciences 38, no.3 (2022): 159 - 167. 10.15312/EurasianJVetSci.2022.378
MLA Cellat Mustafa,Etyemez Muhammed Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. Eurasian Journal of Veterinary Sciences, vol.38, no.3, 2022, ss.159 - 167. 10.15312/EurasianJVetSci.2022.378
AMA Cellat M,Etyemez M Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. Eurasian Journal of Veterinary Sciences. 2022; 38(3): 159 - 167. 10.15312/EurasianJVetSci.2022.378
Vancouver Cellat M,Etyemez M Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats. Eurasian Journal of Veterinary Sciences. 2022; 38(3): 159 - 167. 10.15312/EurasianJVetSci.2022.378
IEEE Cellat M,Etyemez M "Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats." Eurasian Journal of Veterinary Sciences, 38, ss.159 - 167, 2022. 10.15312/EurasianJVetSci.2022.378
ISNAD Cellat, Mustafa - Etyemez, Muhammed. "Investigation of the efficacy of tyrosol on doxorubicin-induced acute cardiotoxicity in rats". Eurasian Journal of Veterinary Sciences 38/3 (2022), 159-167. https://doi.org/10.15312/EurasianJVetSci.2022.378