Yıl: 2022 Cilt: 28 Sayı: 6 Sayfa Aralığı: 863 - 868 Metin Dili: İngilizce DOI: 10.5505/pajes.2021.19540 İndeks Tarihi: 02-05-2023

Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration

Öz:
Ammonia is one of the most important parameters to be considered in the treatment of domestic and industrial wastewater. If the ammonia discharged to receiver media (river, lake, and sea) is not treated, it may cause environmental problems. The present study examines the impact of pH, airflow rate, initial ammonia concentration, and temperature on ammonia stripping by using air stripping with a gas-liquid contactor. In the system operated in batch mode, the operations were conducted with fixed pH throughout the stripping period (360 min.) and the optimum pH level was determined to be 11. It was shown that high airflow rate and temperature have significant effects on ammonia stripping efficiency and overall volumetric mass transfer coefficient (𝐾𝐿𝑎). When removing ammonia by altering the initial ammonia concentration, no significant changes were observed in ammonia stripping efficiency and 𝐾𝐿𝑎. With pH of 11, initial ammonia concentration of 100 mg/L, airflow rate of 20 L/min, and temperature of 55 °C, it was determined that removal of ammonia took approximately 90 min. and the highest overall volumetric mass transfer coefficient for this setting was found to be 0.0462 min-1.
Anahtar Kelime:

Bir gaz-sıvı kontaktör kullanarak amonyağın hava ile sıyırılması: pH, sıcaklık, hava debisi ve başlangıç amonyak konsantrasyonunun etkisi

Öz:
Amonyak, evsel ve endüstriyel atıksuların arıtılmasında giderilmesi gereken en önemli parametrelerden biridir. Alıcı ortamlara (nehir, göl ve deniz) deşarj edilen amonyak arıtılmazsa çevresel problemlere neden olabilir. Bu çalışma kapsamında bir gaz-sıvı kontaktör kullanılarak hava sıyırma ile amonyak giderimi üzerine pH, hava debisi, sıcaklık ve başlangıç amonyak konsantrasyonunun etkisi araştırılmıştır. Kesikli işletilen sistemde sıyırma süresi boyunca (360 dk.) sabit pH değerlerinde çalışılmış ve optimum pH değeri 11 olarak belirlenmiştir. Yüksek hava debisi ve sıcaklığın amonyağın giderim verimliliği ve genel hacimsel kütle transfer katsayısı (𝐾𝐿𝑎) üzerinde önemli etkilere sahip olduğu gösterilmiştir. Başlangıç amonyak konsantrasyonunun değiştirilmesiyle amonyak gideriminde ve 𝐾𝐿𝑎 üzerinde dikkat çekici bir değişim gözlenmemiştir. pH 11, başlangıç amonyak konsantrasyonu 100 mg/L, hava debisi 20 L/dk. ve 55 °C’de amonyağın tamamen giderilmesi için yaklaşık 90 dk. gerekli olduğu belirlenmiş ve en yüksek genel hacimsel kütle transfer katsayısı bu işletme değerlerinde 0.0462 dk-1 olarak belirlenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Tan X, Tan SP, Teo WK, Li K. “Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water”. Journal of Membrane Science, 271(1-2), 59-68, 2006.
  • [2] Adam MR, Othman MHD, Puteh MH, Ismail AF, Mustafa A, Rahman MA, Jaafar J. “Impact of sintering temperature and pH of feed solution on adsorptive removal of ammonia from wastewater using clinoptilolite based hollow fibre ceramic membrane”. Journal of Water Process Engineering, 33, 1-10, 2020.
  • [3] Yin S, Chen K, Srinivasakannan C, Guo S, Li S, Peng J, Zhang L. “Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology”. Chemical Engineering Journal, 337, 515-521, 2018.
  • [4] Zhu L, Dong D, Hua X, Xu Y, Guo Z, Liang D. “Ammonia nitrogen removal and recovery from acetylene purification wastewater by air stripping”. Water Science and Technology, 75(11), 2538-2545, 2017.
  • [5] Quan X, Wang F, Zhao Q, Zhao T, Xiang J. “Air stripping of ammonia in a water-sparged aerocyclone reactor”. Journal of Hazardous Materials, 170(2-3), 983-988, 2009.
  • [6] Sharp R, Khunjar W, Daly D, Perez-Terrero J, Chandran K, Niemiec A, Pace G. “Nitrogen removal from water resource recovery facilities using partial nitrification, denitratation-anaerobic ammonia oxidation (PANDA)”. Science of the Total Environment, 724, 1-9, 2020.
  • [7] Adam MR, Othman MHD, Abu Samah R, Puteh MH, Ismail A., Mustafa A, Rahman MA, Jaafar J. “Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development”. Separation and Purification Technology, 213, 114-132, 2019.
  • [8] Bódalo A, Gómez JL, Gómez E, León G, Tejera M. “Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes”. Desalination, 184(1-3), 149-155, 2005.
  • [9] Amanollahi H, Moussavi G, Giannakis S. “Enhanced vacuum UV-based process (VUV/H2O2/PMS) for the effective removal of ammonia from water: Engineering configuration and mechanistic considerations”. Journal of Hazardous Materials, 402, 1-10, 2021.
  • [10] Tu Y, Feng P, Ren Y, Cao Z, Wang R, Xu Z. “Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation”. Fuel, 238, 34-43, 2019.
  • [11] Chung S, Chung J, Chung C. “Enhanced electrochemical oxidation process with hydrogen peroxide pretreatment for removal of high strength ammonia from semiconductor wastewater”. Journal of Water Process Engineering, 37, 1-8, 2020.
  • [12] Ryu HD, Lee SI. “Application of struvite precipitation as a pretreatment in treating swine wastewater”. Process Biochemistry, 45(4), 563-572, 2010.
  • [13] Selçuk Kuşçu Ö, Çelik V. “Biyolojik atık çamurdaki azot ve fosforun darbeli elektrik alan tekniği ile geri kazanımı ve strüvit eldesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25, 700-704, 2019.
  • [14] Hossini H, Rezaee A, Ayati B, Mahvi AH. “Optimizing ammonia volatilization by air stripping from aquatic solutions using response surface methodology (RSM)”. Desalination and Water Treatment, 57(25), 11765-11772, 2016.
  • [15] Yuan MH, Chen YH, Tsai JY, Chang CY. “Removal of ammonia from wastewater by air stripping process in laboratory and pilot scales using a rotating packed bed at ambient temperature”. Journal of the Taiwan Institute of Chemical Engineers, 60, 488-495, 2016.
  • [16] Vu MH, Sakar M, Do TO. “Insights into the recent progress and advanced materials for photocatalytic nitrogen fixation for ammonia (NH3) production”. Catalysts, 2018. http://doi:10.3390/catal8120621.
  • [17] Li G, Yang W, Gao S, Shen Q, Xue J, Chen K, Li Q. “Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination”. Chemical Engineering Journal, 404, 1-10, 2021.
  • [18] Bonmatí A, Flotats X. “Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre- or posttreatment to mesophilic anaerobic digestion”. Waste Management, 23(3), 261-272, 2003.
  • [19] Taşdemir A, Cengiz İ, Yildiz E, Bayhan YK. “Investigation of ammonia stripping with a hydrodynamic cavitation reactor”. Ultrasonics Sonochemistry, 60, 1-8, 2020.
  • [20] Provolo G, Perazzolo F, Mattachini G, Finzi A, Naldi E, Riva E. “Nitrogen removal from digested slurries using a simplified ammonia stripping technique”. Waste Management, 69, 154-161, 2017.
  • [21] Yuan MH, Chen YH, Tsai JY, Chang CY. “Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed”. Process Safety and Environmental Protection, 102, 777-785, 2016.
  • [22] Değermenci N, Ata ON, Yildiz E. “Ammonia removal by air stripping in a semi-batch jet loop reactor”. Journal of Industrial and Engineering Chemistry, 18(1), 399-404, 2012.
  • [23] Matter-Müller C, Gujer W, Giger W. “Transfer of volatile substances from water to the atmosphere”. Water Research, 15(11), 1271-1279, 1981.
  • [24] Liu B, Giannis A, Zhang J, Chang VW-C, Wang JY. “Air stripping process for ammonia recovery from sourceseparated urine: Modeling and optimization”. Journal of Chemical Technology and Biotechnology, 90(12), 2208-2217, 2015.
  • [25] Lin L, Yuan S, Chen J, Xu Z, Lu X. “Removal of ammonia nitrogen in wastewater by microwave radiation”. Journal of Hazardous Materials, 161(2-3), 1063-1068, 2009.
  • [26] Gustin S, Marinsek-Logar R. “Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent”. Process Safety and Environmental Protection, 89(1), 61-66, 2011.
  • [27] Tao W, Ukwuani AT. “Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: Ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content”. Chemical Engineering Journal, 280, 188-196, 2015.
  • [28] Saracco G, Genon G. “High temperature ammonia stripping and recovery from process liquid wastes”. Journal of Hazardous Materials, 37(1), 191-206, 1994.
APA DEGERMENCI G (2022). Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. , 863 - 868. 10.5505/pajes.2021.19540
Chicago DEGERMENCI GOKÇE DIDAR Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. (2022): 863 - 868. 10.5505/pajes.2021.19540
MLA DEGERMENCI GOKÇE DIDAR Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. , 2022, ss.863 - 868. 10.5505/pajes.2021.19540
AMA DEGERMENCI G Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. . 2022; 863 - 868. 10.5505/pajes.2021.19540
Vancouver DEGERMENCI G Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. . 2022; 863 - 868. 10.5505/pajes.2021.19540
IEEE DEGERMENCI G "Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration." , ss.863 - 868, 2022. 10.5505/pajes.2021.19540
ISNAD DEGERMENCI, GOKÇE DIDAR. "Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration". (2022), 863-868. https://doi.org/10.5505/pajes.2021.19540
APA DEGERMENCI G (2022). Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(6), 863 - 868. 10.5505/pajes.2021.19540
Chicago DEGERMENCI GOKÇE DIDAR Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, no.6 (2022): 863 - 868. 10.5505/pajes.2021.19540
MLA DEGERMENCI GOKÇE DIDAR Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.28, no.6, 2022, ss.863 - 868. 10.5505/pajes.2021.19540
AMA DEGERMENCI G Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 28(6): 863 - 868. 10.5505/pajes.2021.19540
Vancouver DEGERMENCI G Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 28(6): 863 - 868. 10.5505/pajes.2021.19540
IEEE DEGERMENCI G "Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28, ss.863 - 868, 2022. 10.5505/pajes.2021.19540
ISNAD DEGERMENCI, GOKÇE DIDAR. "Air stripping of ammonia using a gas-liquid contactor: Effect of pH, temperature, airflow rate, and initial ammonia concentration". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/6 (2022), 863-868. https://doi.org/10.5505/pajes.2021.19540