Yıl: 2023 Cilt: 10 Sayı: 2 Sayfa Aralığı: 99 - 116 Metin Dili: İngilizce DOI: 10.17350/HJSE19030000297 İndeks Tarihi: 31-07-2023

Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations

Öz:
In this study, 1,3,4-thiadiazole derivatives were obtained from the reaction of benzophenone-4,4'-dicarboxylic acid and N-substitute-thiosemicarbazide compounds with each other. After the synthesis of the final products, some biological properties of these compounds such as antibiofilm, antimicrobial and efflux pump inhibiting efficiencies were evaluated. According to the MBC/MFC test, all the activities were found to be bacteriostatic, also, especially the biofilm inhibition activity of C1 against K. pneumoniae is noteworthy. In addition, C4 was observed to exhibit efflux pump inhibition activity in E. coli, whereas C2 and C3 in K. pneumoniae. The absorption and emission values of the molecules were obtained and electrochemical studies were performed. In addition; absorption, metabolism, distribution, excretion and toxicity (ADMET) scores were predicted using the pharmacokinetic properties of all 1,3,4-thiadiazole compounds. Finally, the electrochemical stabilities of the synthesized molecules have been analyzed by using cyclic voltammetry in 0.1 M TBAPF6 in DMSO as a supporting electrolyte.
Anahtar Kelime: Efflux pump inhibition antibiofilm antibacterial ADMET QSAR

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Janowska S, Paneth A, Wujec M. Cytotoxic Properties of 1,3,4-Thiadiazole Derivatives—A Review. Molecules 2020;25:4309. https://doi.org/10.3390/molecules25184309.
  • 2. Ningegowda R, Shivananju NS, Rajendran P, Basappa, Rangappa KS, Chinnathambi A, et al. A novel 4,6-disubstituted-1,2,4- triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF- κB activation cascade. Apoptosis 2017;22:145–57. https://doi. org/10.1007/s10495-016-1312-8.
  • 3. Lalita, Chauhan ; Shalini G. Journal of drug delivery and therapeutics (jddt). Journal of Drug Delivery & Therapeutics 2020;9:661–8.
  • 4. Disposition D. Op Y Ig Ht S Ht S 2015;46:750–6.
  • 5. Datar PA. Design and Synthesis of Thiadiazole Derivatives as Antidiabetic Agents. Medicinal Chemistry 2014;4. https://doi. org/10.4172/2161-0444.1000170.
  • 6. Thrilochana, P., Sahu, C. N., Hazra, K., and Ramachandran S. Synthesis and Biological Evaluation of New Thiadiazole Analogs for Anti-diabetic Activity against Alloxan-Induced Diabetes. J Pharm Res 2014;8:1–8.
  • 7. Cristina A, Leonte D, Vlase L, Bencze L, Imre S, Marc G, et al. Heterocycles 48. Synthesis, Characterization and Biological Evaluation of Imidazo[2,1-b][1,3,4]Thiadiazole Derivatives as Anti-Inflammatory Agents. Molecules 2018;23:2425. https://doi. org/10.3390/molecules23102425.
  • 8. Schenone S, Brullo C, Bruno O, Bondavalli F, Ranise A, Filippelli W, et al. New 1,3,4-thiadiazole derivatives endowed with analgesic and anti-inflammatory activities. Bioorganic & Medicinal Chemistry 2006;14:1698–705. https://doi.org/10.1016/j.bmc.2005.10.064.
  • 9. Can ÖD, Altıntop MD, Özkay ÜD, Üçel Uİ, Doğruer B, Kaplancıklı ZA. Synthesis of thiadiazole derivatives bearing hydrazone moieties and evaluation of their pharmacological effects on anxiety, depression, and nociception parameters in mice. Archives of Pharmacal Research 2012;35:659–69. https://doi.org/10.1007/ s12272-012-0410-6.
  • 10. Samel AB, Pai NR. Synthesis of Novel Aryloxy Propanoyl Thiadiazoles as Potential Antihypertensive Agents. Journal of the Chinese Chemical Society 2010;57:1327–30. https://doi.org/10.1002/ jccs.201000196.
  • 11. Serban G. Synthetic Compounds with 2-Amino-1,3,4-Thiadiazole Moiety Against Viral Infections. Molecules 2020;25:942. https:// doi.org/10.3390/molecules25040942.
  • 12. Brai, Ronzini, Riva, Botta, Zamperini, Borgini, et al. Synthesis and Antiviral Activity of Novel 1,3,4-Thiadiazole Inhibitors of DDX3X. Molecules 2019;24:3988. https://doi.org/10.3390/ molecules24213988.
  • 13. Azar Tahghighi and FB. Thiadiazoles: the appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: a review. Iran J Basic Med Sci 2017;20:613–22. https://doi. org/10.22038/IJBMS.2017.8828.
  • 14. Sadat-Ebrahimi SE, Mirmohammadi M, Tabatabaei ZM, Arani MA, Jafari-Ashtiani S, Hashemian M, et al. Novel 5-(Nitrothiophene-2- yl)-1,3,4-thiadiazole derivatives: Synthesis and antileishmanial activity against promastigote stage of leishmania major. Iranian Journal of Pharmaceutical Research 2019;18:1816–22. https://doi. org/10.22037/ijpr.2019.14547.12476.
  • 15. Muğlu H, Şener N, Mohammad Emsaed HA, Özkınalı S, Özkan OE, Gür M. Synthesis and characterization of 1,3,4-thiadiazole compounds derived from 4-phenoxybutyric acid for antimicrobial activities. Journal of Molecular Structure 2018;1174:151–9. https:// doi.org/10.1016/j.molstruc.2018.03.116.
  • 16. Gür M, Yerlikaya S, Şener N, Özkınalı S, Baloglu MC, Gökçe H, et al. Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. Journal of Molecular Structure 2020;1219. https://doi.org/10.1016/j.molstruc.2020.128570.
  • 17. Cascioferro S. The Future of Antibiotic: From the Magic Bullet to the Smart Bullet. Journal of Microbial & Biochemical Technology 2014;06. https://doi.org/10.4172/1948-5948.1000e118.
  • 18. Cascioferro S, Cusimano MG, Schillaci D. Antiadhesion agents against Gram-positive pathogens. Future Microbiology 2014;9:1209–20. https://doi.org/10.2217/fmb.14.56.
  • 19. Schillaci D, Spanò V, Parrino B, Carbone A, Montalbano A, Barraja P, et al. Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. Journal of Medicinal Chemistry 2017;60:8268–97. https://doi.org/10.1021/acs.jmedchem.7b00215.
  • 20. Lynch AS, Robertson GT. Bacterial and Fungal Biofilm Infections. Annual Review of Medicine 2008;59:415–28. https://doi. org/10.1146/annurev.med.59.110106.132000.
  • 21. Parrino B, Diana P, Cirrincione G, Cascioferro S. Bacterial Biofilm Inhibition in the Development of Effective Anti-Virulence Strategy. The Open Medicinal Chemistry Journal 2018;12:84–7. https://doi.or g/10.2174/1874104501812010084.
  • 22. Raimondi MV, Maggio B, Raffa D, Plescia F, Cascioferro S, Cancemi G, et al. Synthesis and anti-staphylococcal activity of new 4-diazopyrazole derivatives. European Journal of Medicinal Chemistry 2012;58:64–71. https://doi.org/10.1016/j. ejmech.2012.09.041.
  • 23. Schillaci D, Petruso S, Cascioferro S, Raimondi MV, Haagensen JAJ, Molin S. In vitro anti-Gram-positive and antistaphylococcal biofilm activity of newly halogenated pyrroles related to pyrrolomycins. International Journal of Antimicrobial Agents 2008;31:380–2. https://doi.org/10.1016/j.ijantimicag.2007.10.013.
  • 24. Zurnacı M, Şenturan M, Şener N, Gür M, Altınöz E, Şener İ, et al. Studies on Antimicrobial, Antibiofilm, Efflux Pump Inhibiting, and ADMET Properties of Newly Synthesized 1,3,4 Thiadiazole Derivatives**. ChemistrySelect 2021;6:12571–81. https://doi. org/10.1002/slct.202103214.
  • 25. Cos P, Vlietinck AJ, Berghe D Vanden, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept.” Journal of Ethnopharmacology 2006;106:290– 302. https://doi.org/10.1016/j.jep.2006.04.003.
  • 26. Altuner EM, Canli K, Akata I. Antimicrobial screening of Calliergonella cuspidata, Dicranum polysetum and Hypnum cupressiforme. Journal of Pure and Applied Microbiology 2014;8:539–45.
  • 27. ALTUNER EM, ÇETER T, GÜR M, GÜNEY K, KIRAN B, AKWIETEN HE, et al. Chemical Composition and Antimicrobial Activities of Cold-Pressed Oils Obtained From Nettle, Radish and Pomegranate Seeds. Kastamonu Üniversitesi Orman Fakültesi Dergisi 2018;18:236–47. https://doi.org/10.17475/kastorman.498413.
  • 28. Canli K, Yetgin A, Benek A, Bozyel ME, Altuner EM. In Vitro Antimicrobial Activity Screening of Ethanol Extract of Lavandula stoechas and Investigation of Its Biochemical Composition. Advances in Pharmacological Sciences 2019;2019. https://doi. org/10.1155/2019/3201458.
  • 29. Karaca B, Çöleri Cihan A, Akata I, Altuner EM. Anti-Biofilm and Antimicrobial Activities of Five Edible and Medicinal Macrofungi Samples on Some Biofilm Producing Multi Drug Resistant Enterococcus Strains. Turkish Journal of Agriculture - Food Science and Technology 2020;8:69. https://doi.org/10.24925/turjaf. v8i1.69-80.2723.
  • 30. Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, et al. Crystal Violet and XTT Assays on Staphylococcus aureus Biofilm Quantification. Current Microbiology 2016;73:474–82. https://doi.org/10.1007/ s00284-016-1081-1.
  • 31. Vestby LK, Møretrø T, Langsrud S, Heir E, Nesse LL. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Veterinary Research 2009;5:1–6. https://doi.org/10.1186/1746-6148-5-20.
  • 32. Martins M, Couto I, Viveiros M, Amaral L. in Bacterial Clinical Isolates by Two Simple Methods. Methods 2010;642:143–57. https:// doi.org/10.1007/978-1-60327-279-7.
  • 33. Altınöz E, Altuner EM. Responses of some Escherichia coli clinical isolate strains with multiple drug resistance and overexpressed efux pumps against efux pump inhibitors. International Journal of Biology and Chemistry 2020;13:77–87. https://doi.org/10.26577/ ijbch.2020.v13.i1.08.
  • 34. Drug Likeness Tool 2018. http://www.niper.gov.in/pi_dev_tools/ DruLiToWeb/DruLiTo_index.html.
  • 35. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017;7:1–13. https://doi.org/10.1038/srep42717.
  • 36. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 2012;64:4–17. https://doi. org/10.1016/j.addr.2012.09.019.
  • 37. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry 1999;1:55–68. https://doi.org/10.1021/cc9800071.
  • 38. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 2002;45:2615–23. https://doi.org/10.1021/jm020017n.
  • 39. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry 2000;43:3867–77. https://doi.org/10.1021/jm000292e.
  • 40. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug- like chemical matter. Journal of Medicinal Chemistry 2001;44:1841– 6. https://doi.org/10.1021/jm015507e.
  • 41. Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, et al. Admetlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics 2018;10:1–11. https://doi.org/10.1186/s13321-018- 0283-x.
  • 42. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, et al. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling 2012;52:3099–105. https://doi.org/10.1021/ci300367a.
  • 43. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019;35:1067–9. https://doi.org/10.1093/ bioinformatics/bty707.
  • 44. Lee SK, Chang GS, Lee IH, Chung JE, Sung KY NK. The PreADME: Pc-Based program for batch prediction of ADME properties. EuroQSAR 2004;9:5–10.
  • 45. Lee S, Lee IH, Kim H joong, Chang GS, Chung JE, No KT. The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. Euro QSAR 2002 - Designing Drugs and Crop Protectants: Processes Problems and Solutions 2002:418–20.
  • 46. Datar PA. 2D-QSAR Study of Indolylpyrimidines Derivative as Antibacterial against Pseudomonas aeruginosa and Staphylococcus aureus : A Comparative Approach . Journal of Computational Medicine 2014;2014:1–9. https://doi.org/10.1155/2014/765457.
  • 47. Core R Team. A language and environment for statistical computing. Https://WwwR-ProjectOrg/ 2016. https://www.r-project.org/.
  • 48. Şener İ, Şahin Ç, Demir S, Şener N, Gür M. A combined experimental and computational study of electrochemical and photophysical properties of new benzophenone derivatives functionalized with N-substituted-phenyl-1,3,4-thiadiazole-2- amine. Journal of Molecular Structure 2020;1203. https://doi. org/10.1016/j.molstruc.2019.127475.
  • 49. Şener N, Gür M, Çavuş MS, Zurnaci M, Şener İ. Synthesis, Characterization, and Theoretical Calculation of New Azo Dyes Derived from [1,5 a ]Pyrimidine 5 one Having Solvatochromic Properties. Journal of Heterocyclic Chemistry 2019;56:1101–10. https://doi.org/10.1002/jhet.3497.
  • 50. Langdon-Jones EE, Hallett AJ, Routledge JD, Crole DA, Ward BD, Platts JA, et al. Using Substituted Cyclometalated Quinoxaline Ligands To Finely Tune the Luminescence Properties of Iridium(III) Complexes. Inorganic Chemistry 2013;52:448–56. https://doi.org/10.1021/ic301853t.
  • 51. Jabłońska-Wawrzycka A, Rogala P, Czerwonka G, Michałkiewicz S, Hodorowicz M, Kowalczyk P. Ruthenium(IV) Complexes as Potential Inhibitors of Bacterial Biofilm Formation. Molecules 2020;25:4938. https://doi.org/10.3390/molecules25214938.
  • 52. Sultana ST, Babauta JT, Beyenal H. Electrochemical biofilm control: a review. Biofouling 2015;31:745–58. https://doi.org/10.1080/089270 14.2015.1105222.
  • 53. Samsonoff N. Photosynthetic-Plasmonic-Voltaics: Plasmonically Excited Biofilms for Electricity Production. Master of Applied Science Graduate Department of Mechanical and Industrial Engineering, 2013, p. 100.
  • 54. Nie L, Li Y, Chen S, Li K, Huang Y, Zhu Y, et al. Biofilm Nanofiber- Coated Separators for Dendrite-Free Lithium Metal Anode and Ultrahigh-Rate Lithium Batteries. ACS Applied Materials and Interfaces 2019;11:32373–80. https://doi.org/10.1021/ acsami.9b08656.
  • 55. Önkol T, Dogruer D, Uzun L, Adak S, Özkan S, Sahin MF. Synthesis and antimicrobial activity of new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry 2008;23:277–84. https://doi.org/10.1080/14756360701408697.
  • 56. Otilia Pintilie, Lenuta Profire, Valeriu Sunel MP and AP. Synthesis and Antimicrobial Activity of Some New 1,3,4-Thiadiazole and 1,2,4-Triazole Compounds Having a D,L-Methionine Moiety. Molecules 2007;12:103–13. https://doi.org/10.1007/BF03038821.
  • 57. Zamani, K.; Faghifi, K.; Tefighi, I.; Sharlatzadeh MR. Synthesis and Antimicrobial Activity of Some Pyridyl and Naphthyl Substituted 1 , 2 , 4-Triazole and. Turkish Journal of Chemistry 2004;28:95–100.
  • 58. Richet H, Fournier PE. Nosocomial Infections Caused by Acinetobacter baumannii A Major Threat Worldwide . Infection Control & Hospital Epidemiology 2006;27:645–6. https://doi. org/10.1086/505900.
  • 59. J. Rodrı ́guez-Ban ̃o, S. Martı ́, S. Soto, F. Ferna ́ndez-Cuenca, J. M. Cisneros4, J. Pacho ́n, A. Pascual, L. Martı ́nez- Martı ́nez5, C. McQueary6, L. A. Actis JV and the SG for the S of. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clinical Microbiology and Infection 2008;14:276–8.
  • 60. Jesús Rodríguez-Baño, MD, PhD; Jose M. Cisneros, MD, PhD; Felipe Fernández-Cuenca, MD, PhD; Anna Ribera, MD; Jordi Vila, MD, PhD; Alvaro Pascual, MD, PhD; Luis Martínez-Martínez, MD, PhD; Germán Bou, MD, PhD; Jerónimo Pachón, MD P the G de E de IH (GEIH). Clinical features and epidemiology of Acinetobacter baumanni colonization and infection in Spanish hospitals 2004;25:819–24.
  • 61. Rodríguez-Baño J, Pascual Á, Gálvez J, Muniain MÁ, Ríos MJ, Martínez-Martínez L, et al. Bacteriemias por Acinetobacter baumannii: Características clínicas y pronósticas. Enfermedades Infecciosas y Microbiologia Clinica 2003;21:242–7. https://doi. org/10.1157/13046543.
  • 62. Hatt JK, Rather PN. Role of bacterial biofilms in urinary tract infections. Current Topics in Microbiology and Immunology 2008;322:163–92. https://doi.org/10.1007/978-3-540-75418-3_8.
  • 63. López D, Vlamakis H, Kolter R. Biofilms. Cold Spring Harbor Perspectives in Biology 2010;2. https://doi.org/10.1101/cshperspect. a000398.
  • 64. Jabra-Rizk MA, Falkler WA, Meiller TF. Fungal Biofilms and Drug Resistance. Emerging Infectious Diseases 2004;10:14–9. https://doi. org/10.3201/eid1001.030119.
  • 65. Cascioferro S, Parrino B, Petri GL, Cusimano MG, Schillaci D, Di Sarno V, et al. 2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors. European Journal of Medicinal Chemistry 2019;167:200–10. https://doi. org/10.1016/j.ejmech.2019.02.007.
  • 66. Minvielle MJ, Bunders CA, Melander C. Indole-triazole conjugates are selective inhibitors and inducers of bacterial biofilms. MedChemComm 2013;4:916–9. https://doi.org/10.1039/ c3md00064h.
  • 67. Markou G, Georgakakis D. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Applied Energy 2011;88:3389–401. https:// doi.org/10.1016/j.apenergy.2010.12.042.
  • 68. Rahman A, Agrawal S, Nawaz T, Pan S, Selvaratnam T. A review of algae-based produced water treatment for biomass and biofuel production. Water (Switzerland) 2020;12:1–27. https://doi. org/10.3390/W12092351.
  • 69. Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy 2003;51:9–11. https://doi.org/10.1093/jac/dkg050.
  • 70. Pogrebnoi S, Chiriţă C, Valica V, Macaev F, Chifiriuc MC, Kamerzan C, et al. Studies on the antimycobacterial action of a novel compound of the thiadiazole class, 2-(Propyl-thio)-5H-[1,3,4]- thiadiazole[2,3-B]-quinazoline-5-one. Farmacia 2017;65:69–74.
  • 71. Zeng B, Wang H, Zou L, Zhang A, Yang X, Guan Z. Evaluation and target validation of indole derivatives as inhibitors of the AcrAB- TolC efflux pump. Bioscience, Biotechnology and Biochemistry 2010;74:2237–41. https://doi.org/10.1271/bbb.100433.
  • 72. Nikaido E, Shirosaka I, Yamaguchi A, Nishino K. Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology 2011;157:648–55. https://doi.org/10.1099/mic.0.045757-0.
  • 73. Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environmental Microbiology 2014;16:1267–81. https://doi. org/10.1111/1462-2920.12368.
  • 74. Artursson P. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorbtive (Caco 2) cells. Journal of Pharmaceutical Sciences 1990;79:476–82. https://doi.org/10.1002/jps.2600790604.
  • 75. Kratochwil NA, Huber W, Müller F, Kansy M, Gerber PR. Predicting plasma protein binding of drugs: A new approach. Biochemical Pharmacology 2002;64:1355–74. https://doi.org/10.1016/S0006- 2952(02)01074-2.
  • 76. Palleria C, Di Paolo A, Giofrè C, Caglioti C, Leuzzi G, Siniscalchi A, et al. Pharmacokinetic drug-drug interaction and their implication in clinical management. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences 2013;18:601–10.
  • 77. Sonkusre P. Specificity of Biogenic Selenium Nanoparticles for Prostate Cancer Therapy With Reduced Risk of Toxicity: An in vitro and in vivo Study. Frontiers in Oncology 2020;9:1–11. https:// doi.org/10.3389/fonc.2019.01541.
  • 78. Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends in Pharmacological Sciences 2004;25:423–9. https://doi. org/10.1016/j.tips.2004.06.002.
  • 79. Elmeliegy M, Vourvahis M, Guo C, Wang DD. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug–Drug Interaction Studies. Clinical Pharmacokinetics 2020;59:699–714. https://doi.org/10.1007/ s40262-020-00867-1.
  • 80. Pardridge WM. Blood-brain barrier delivery. Drug Discovery Today 2007;12:54–61. https://doi.org/10.1016/j.drudis.2006.10.013.
  • 81. Fong CW. Permeability of the Blood–Brain Barrier: Molecular Mechanism of Transport of Drugs and Physiologically Important Compounds. Journal of Membrane Biology 2015;248:651–69. https://doi.org/10.1007/s00232-015-9778-9.
  • 82. Nielsen PA, Andersson O, Hansen SH, Simonsen KB, Andersson G. Models for predicting blood-brain barrier permeation. Drug Discovery Today 2011;16:472–5. https://doi.org/10.1016/j. drudis.2011.04.004.
  • 83. Muehlbacher M, Spitzer GM, Liedl KR, Kornhuber J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. Journal of Computer-Aided Molecular Design 2011;25:1095–106. https://doi.org/10.1007/s10822-011-9478-1.
  • 84. Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clinical Pharmacology & Therapeutics 1975;18:377–90. https://doi.org/10.1002/cpt1975184377.
  • 85. Ye M, Nagar S, Korzekwa K. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding. Biopharmaceutics & Drug Disposition 2016;37:123–41. https://doi.org/10.1002/bdd.1996.
  • 86. Guengerich,Peter F. Cytochromes P450, Drugs, and Diseases. Molecular Interventions 2003;3:194–204.
  • 87. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology and Therapeutics 2013;138:103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.
  • 88. Kerns EH, Di L. Drug-like Properties: Concepts, Structure Design and Methods. Drug-like Properties: Concepts, Structure Design and Methods 2008.
  • 89. Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep Learning for Drug-Induced Liver Injury. Journal of Chemical Information and Modeling 2015;55:2085–93. https://doi.org/10.1021/acs. jcim.5b00238.
  • 90. Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, et al. ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Molecular Pharmaceutics 2012;9:996–1010. https://doi. org/10.1021/mp300023x.
  • 91. Zeiger E. The test that changed the world: The Ames test and the regulation of chemicals. Mutation Research - Genetic Toxicology and Environmental Mutagenesis 2019;841:43–8. https://doi. org/10.1016/j.mrgentox.2019.05.007.
  • 92. Fujita Y, Honda H, Yamane M, Morita T, Matsuda T, Morita O. A decision tree-based integrated testing strategy for tailor-made carcinogenicity evaluation of test substances using genotoxicity test results and chemical spaces. Mutagenesis 2019;34:3–16. https://doi. org/10.1093/mutage/gey039.
APA gür m, ZURNACI M, ALTINÖZ E, Şener N, SAHIN C, ŞENTURAN M, ŞENER İ, çavuş M, Altuner E (2023). Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. , 99 - 116. 10.17350/HJSE19030000297
Chicago gür mahmut,ZURNACI Merve,ALTINÖZ Eda,Şener Nesrin,SAHIN CIGDEM,ŞENTURAN Merve,ŞENER İZZET,çavuş Muhammet Serdar,Altuner Ergin Murat Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. (2023): 99 - 116. 10.17350/HJSE19030000297
MLA gür mahmut,ZURNACI Merve,ALTINÖZ Eda,Şener Nesrin,SAHIN CIGDEM,ŞENTURAN Merve,ŞENER İZZET,çavuş Muhammet Serdar,Altuner Ergin Murat Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. , 2023, ss.99 - 116. 10.17350/HJSE19030000297
AMA gür m,ZURNACI M,ALTINÖZ E,Şener N,SAHIN C,ŞENTURAN M,ŞENER İ,çavuş M,Altuner E Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. . 2023; 99 - 116. 10.17350/HJSE19030000297
Vancouver gür m,ZURNACI M,ALTINÖZ E,Şener N,SAHIN C,ŞENTURAN M,ŞENER İ,çavuş M,Altuner E Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. . 2023; 99 - 116. 10.17350/HJSE19030000297
IEEE gür m,ZURNACI M,ALTINÖZ E,Şener N,SAHIN C,ŞENTURAN M,ŞENER İ,çavuş M,Altuner E "Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations." , ss.99 - 116, 2023. 10.17350/HJSE19030000297
ISNAD gür, mahmut vd. "Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations". (2023), 99-116. https://doi.org/10.17350/HJSE19030000297
APA gür m, ZURNACI M, ALTINÖZ E, Şener N, SAHIN C, ŞENTURAN M, ŞENER İ, çavuş M, Altuner E (2023). Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. Hittite Journal of Science and Engineering, 10(2), 99 - 116. 10.17350/HJSE19030000297
Chicago gür mahmut,ZURNACI Merve,ALTINÖZ Eda,Şener Nesrin,SAHIN CIGDEM,ŞENTURAN Merve,ŞENER İZZET,çavuş Muhammet Serdar,Altuner Ergin Murat Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. Hittite Journal of Science and Engineering 10, no.2 (2023): 99 - 116. 10.17350/HJSE19030000297
MLA gür mahmut,ZURNACI Merve,ALTINÖZ Eda,Şener Nesrin,SAHIN CIGDEM,ŞENTURAN Merve,ŞENER İZZET,çavuş Muhammet Serdar,Altuner Ergin Murat Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. Hittite Journal of Science and Engineering, vol.10, no.2, 2023, ss.99 - 116. 10.17350/HJSE19030000297
AMA gür m,ZURNACI M,ALTINÖZ E,Şener N,SAHIN C,ŞENTURAN M,ŞENER İ,çavuş M,Altuner E Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. Hittite Journal of Science and Engineering. 2023; 10(2): 99 - 116. 10.17350/HJSE19030000297
Vancouver gür m,ZURNACI M,ALTINÖZ E,Şener N,SAHIN C,ŞENTURAN M,ŞENER İ,çavuş M,Altuner E Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations. Hittite Journal of Science and Engineering. 2023; 10(2): 99 - 116. 10.17350/HJSE19030000297
IEEE gür m,ZURNACI M,ALTINÖZ E,Şener N,SAHIN C,ŞENTURAN M,ŞENER İ,çavuş M,Altuner E "Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations." Hittite Journal of Science and Engineering, 10, ss.99 - 116, 2023. 10.17350/HJSE19030000297
ISNAD gür, mahmut vd. "Novel 1,3,4-Thiadiazole Derivatives as Antibiofilm, Antimicrobial, Efflux Pump Inhibiting Agents and Their ADMET Characterizations". Hittite Journal of Science and Engineering 10/2 (2023), 99-116. https://doi.org/10.17350/HJSE19030000297