Yıl: 2015 Cilt: 10 Sayı: 3 Sayfa Aralığı: 211 - 218 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

MikroRNA Biyogenezi

Öz:
Öz: MikroRNAlar (miRNA) kodlama yapmayan 21-24 nükleotid uzunluğunda RNA molekülleridir. Genel olarak translasyonun baskılanmasına veya mRNAnın yıkımlanmasına neden olurlar. MikroRNA ilk keşfedildiğinde solucanlarda olağandışı spesifik gen ekspresyon mekanizması olarak düşünülmesine rağmen, artık günümüzde ökaryotlarda önemli gen ekspresyon düzenleyicisi olarak kabul edilmektedir. MikroRNA biyogenezi çekirdekte RNA polimeraz II aracılığında transkripsiyon ile başlar ve hairpin yapısında olgun miRNA dizisini içeren uzun miRNA (pri-miRNA)dan oluşur. Hairpin yapısı Drosha (RNAaz III enzimi) ve kofaktörü DiGeorge kritik sendrom bölgesi 8 (DGCR8)den oluşan mikroprosesör tarafından kesilir. Oluşan prekürsör miRNA (pre-miRNA) nükleustan Exportin-5 ile sitoplazmaya taşınır ve diğer RNAaz III enzimi olan Dicer tarafından 21-24 nükleotid uzunluğundaki dubleks miRNAya kesilir. Olgun diziye kesilecek olan iplik miRNA, RNA indüklenmiş susturma kompleksinde (RISC) Argonautea yüklenir. MikroRNAnın 2-8 nükleotidlik çekirdek dizisi hedef mRNA ile tam olarak eşlendiğinde mRNAnın destabilizasyonu sağlanır. Ancak tam olarak eşlenmediği zaman translasyonal baskılanmaya neden olur. MikroRNAların gelişim, farklılaşma ve diğer fizyolojik fonksiyonlarda önemli rol aldığı gösterilmesine rağmen, düzensiz ifadesi durumunda farklı patolojik olaylar ile ilişkilendirilmiştir. MikroRNA biyogenezinin farklı fizyolojik süreçlerde ve hastalıklarda epigenetik etkisinin moleküler düzeyde anlaşılmasının potansiyel önemi bulunmaktadır.
Anahtar Kelime:

Konular: Biyoloji

MicroRNA Biogenesis

Öz:
Abstract: MicroRNAs (miRNA) are non-coding RNA molecules with 21-24 nucleotide length. Basically, miRNAs cause either inhibition of protein translation or degradation of mRNA. Although it was thought to be an unusual specific gene expression mechanism when first discovered, it is now accepted as a pivotal regulator of gene expression. Biogenesis of miRNA begins with RNA polymerase II in nucleus and turns out to be long hairpin that contains mature long miRNA sequence (pri-miRNA). Hairpin structure is cleaved by microprocessor complex composed of Drosha (RNAse III) and DiGeorge critical syndrome region 8 (DGCR8). Pre-miRNA is transported by Exportin 5 from nucleus to cytoplasm and in turn cleaved to 21-24 nucleotide long miRNA duplex by RNAse III (Dicer). The strand converted to mature sequence is loaded to Argonaute on RNA induced silencing complex (RISC). MicroRNAs has seed a sequence, 2-8 nucleotide in length. When the seed sequence binds to target mRNA with a perfect complementarity, it destabilizes the mRNA. However, when it binds to target mRNA with imperfect complementarity, causes the inhibition of translation. Although miRNAs play role in development, differentiation, and other physiological events, aberrant expression of miRNA is associated with different pathological conditions. The understanding of epigenetic effect of miRNA biogenesis on different physiological processes and diseases has potential importance at the molecular level.
Anahtar Kelime:

Konular: Biyoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • KAYNAKLAR 1. Lee RC., Feinbaum RL., Ambros V., 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854. 2. Wightman B., Ha I., Ruvkun G., 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855-862. 3. Bartel DP., 2009. MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-233. 4. O'Connell RM., Rao DS., Chaudhuri AA., Baltimore D., 2010. Physiological and pathological roles for microRNAs in the immune system. Nature Review Immunology, 10, 111-122. 5. Yousef M., Allmer J., 2014. miRNomics: MicroRNA Biology and Computational Analysis. 1st ed., 1-2, Humana Press, Springer Protocols. 6. Reinhart BJ., Slack FJ., Basson M., Pasquinelli AE., Bettinger JC., Rougvie AE., Horvitz HR., Ruvkun G., 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-906. 7. Bartel DP., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297. 8. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T., 2001. Identification of novel genes coding for small expressed RNAs. Science, 294, 853-858. 9. Kozomara A., Griffiths-Jones S., 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acid Research, 42 (Database issue): D68–D73. 10. Winter J., Jung S., Keller S., Gregory RI., Diederichs S., 2009. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11, 228-234. 11. Yang JS., Lai EC., 2011. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular Cell, 43, 892-903. 12. Rodriguez A., Griffiths-Jones S., Ashurst JL., Bradley A., 2004. Identification of mammalian microRNA host genes and transcription units. Genome Research, 14, 1902-1910. 13. Martinez NJ., Ow MC., Barrasa MI., Hammell M., Sequerra R., Doucette-Stamm L., Roth FP., Ambros VR., Walhout AJ., 2008. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes & Development, 22, 2535-2549. 14. Baskerville S., Bartel DP., 2005. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241-247. 15. Lee Y., Jeon K., Lee JT., Kim S., Kim VN., 2002. MicroRNA maturation: stepwise processing and subcellular localization. European Molecular Biology Organization, 21, 4663-4670. 16. Mondol V., Pasquinelli AE., 2012. Let's make it happen: the role of let-7 microRNA in development. Current Topics in Developmental Biology, 99, 1-30. 17. Bouhallier F., Allioli N., Lavial F., Chalmel F., Perrard MH., Durand P., Samarut J., Pain B., Rouault JP., 2010. Role of miR-34c microRNA in the late steps of spermatogenesis. RNA, 16, 720- 731. 18. Scott H., Howarth J., Lee YB., Wong LF., Bantounas I., Phylactou L., Verkade P., Uney JB., 2012. MiR-3120 is a mirror microRNA that targets heat shock cognate protein 70 and auxilin messenger RNAs and regulates clathrin vesicle uncoating. Journal of Biological Chemistry, 287, 14726-14733. 19. Lee Y., Kim M., Han J., Yeom KH., Lee S., Baek SH., Kim VN., 2004. MicroRNA genes are transcribed by RNA polymerase II. European Molecular Biology Organization, 23, 4051-4060. 20. Borchert GM., Lanier W., Davidson BL., 2006. RNA polymerase III transcribes human microRNAs. Nature Structural Molecular Biology, 13, 1097- 1101. 21. Morlando M., Ballarino M., Gromak N., Pagano F., Bozzoni I., Proudfoot NJ., 2008. Primary microRNA transcripts are processed co- transcriptionally. Nature Structural Molecular Biology, 15, 902-909. 22. Monteys AM., Spengler RM., Wan J., Tecedor L., Lennox KA., Xing Y., Davidson BL., 2010. Structure and activity of putative intronic miRNA promoters. RNA, 16, 495-505. 23. Marson A., Levine SS., Cole MF., Frampton GM., Brambrink T., Johnstone S., Guenther MG., Johnston WK., Wernig M., Newman J., Calabrese JM., Dennis LM., Volkert TL., Gupta S., Love J., Hannett N., Sharp PA., Bartel DP., Jaenisch R., Young RA., 2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134, 521-533. 24. Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S., 2014. MiR-3960 binding sites with mRNA of human genes. Bioinformation, 10, 423-427. 25. Denli AM., Tops BB., Plasterk RH., Ketting RF., Hannon GJ., 2004. Processing of primary microRNAs by the microprocessor complex. Nature, 432, 231-235. 26. Han J., Lee Y., Yeom KH., Kim YK., Jin H., Kim VN., 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016-3027. 27. Yeom KH., Lee Y., Han J., Suh MR., Kim VN., 2006. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Research, 34, 4622-4629. 28. Zeng Y., Cullen BR., 2005. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. Journal of Biological Chemistry, 280, 27595-27603. 29. Han J., Lee Y., Yeom KH., Nam JW., Heo I., Rhee JK., Sohn SY., Cho Y., Zhang BT., Kim VN., 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125, 887-901. 30. Zhang X., Zeng Y., 2010. The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Research, 38, 7689-7697. 31. Triboulet R., Chang HM., Lapierre RJ., Gregory RI., 2009. Post-transcriptional control of DGCR8 expression by the microprocessor. RNA, 15, 1005- 1011. 32. Bohnsack MT., Czaplinski K., Gorlich D., 2004. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre- miRNAs. RNA, 10, 185-191. 33. Lei EP., Silver PA., 2002. Protein and RNA export from the nucleus. Developmental Cell, 2, 261- 272. 34. Bennasser Y., Chable-Bessia C., Triboulet R., Gibbings D., Gwizdek C., Dargemont C., Kremer EJ., Voinnet O., Benkirane M., 2011. Competition for XPO5 binding between Dicer mRNA, pre- miRNA and viral RNA regulates human Dicer levels. Nature Structural & Molecular Biology, 18, 323-327. 35. Bernstein E., Caudy AA., Hammond SM., Hannon GJ., 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363-366. 36. MacRae IJ., Doudna JA., 2007. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Current Opinion in Structural Biology, 17, 138-145. 37. Lau PW., Guiley KZ., De N., Potter CS., Carragher B., MacRae IJ., 2012. The molecular architecture of human Dicer. Nature Structural & Molecular Biology, 19, 436-440. 38. Wiesen JL., Tomasi TB., 2009. Dicer is regulated by cellular stresses and interferons. Molecular Immunology, 46, 1222-1228. 39. Ma E., MacRae IJ., Kirsch JF., Doudna JA., 2008. Autoinhibition of human dicer by its internal helicase domain. Journal of Molecular Biology, 380, 237-243. 40. Koscianska E., Starega-Roslan J., Krzyzosiak WJ., 2011. The role of Dicer protein partners in the processing of microRNA precursors. PLoS One, 6, 28548. 41. Haase AD., Jaskiewicz L., Zhang H., Lainé S., Sack R., Gatignol A., Filipowicz W., 2005. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. European Molecular Biology Organization, 6, 961-967. 42. Abdelmohsen K., Tominaga-Yamanaka K., Srikantan S., Yoon JH., Kang MJ., Gorospe M., 2012. RNA-binding protein AUF1 represses Dicer expression. Nucleic Acids Research, 40, 11531- 11544. 43. Dresios J., Aschrafi A., Owens GC., Vanderklish PW., Edelman GM., Mauro VP., 2005. Cold stress- induced protein RBM3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proceedings of the National Academy of Sciences, 102, 1865-1870. 44. Suzuki HI., Arase M., Matsuyama H., Choi YL., Ueno T., Mano H., Sugimoto K., Miyazono K., 2011. MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Molecular Cell, 44, 424-436. 45. Pépin G., Perron MP., Provost P., 2012. Regulation of human Dicer by the resident ER membrane protein CLIMP-63. Nucleic Acids Research, 40, 11603-11617. 46. Forman JJ., Legesse-Miller A., Coller HA., 2008. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proceedings of the National Academy of Sciences, 105, 14879-14884. 47. Gregory RI., Chendrimada TP., Cooch N., Shiekhattar R., 2005. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 123, 631-640. 48. Diederichs S., Haber DA., 2007. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell, 131, 1097-1108. 49. Rivas FV., Tolia NH., Song JJ., Aragon JP., Liu J., Hannon GJ., Joshua-Tor L., 2005. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Structural & Molecular Biology, 12, 340-349. 50. Pasquinelli AE., 2012. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics, 13, 271-282. 51. Schwarz DS., Hutvágner G., Du T., Xu Z., Aronin N., Zamore PD., 2003. Asymetry in the assembly of the RNAi enzyme complex. Cell, 115, 199-208.
APA HİTİT M, KURAR E, GÜZELOĞLU A (2015). MikroRNA Biyogenezi. , 211 - 218.
Chicago HİTİT Mustafa,KURAR Ercan,GÜZELOĞLU Aydın MikroRNA Biyogenezi. (2015): 211 - 218.
MLA HİTİT Mustafa,KURAR Ercan,GÜZELOĞLU Aydın MikroRNA Biyogenezi. , 2015, ss.211 - 218.
AMA HİTİT M,KURAR E,GÜZELOĞLU A MikroRNA Biyogenezi. . 2015; 211 - 218.
Vancouver HİTİT M,KURAR E,GÜZELOĞLU A MikroRNA Biyogenezi. . 2015; 211 - 218.
IEEE HİTİT M,KURAR E,GÜZELOĞLU A "MikroRNA Biyogenezi." , ss.211 - 218, 2015.
ISNAD HİTİT, Mustafa vd. "MikroRNA Biyogenezi". (2015), 211-218.
APA HİTİT M, KURAR E, GÜZELOĞLU A (2015). MikroRNA Biyogenezi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 10(3), 211 - 218.
Chicago HİTİT Mustafa,KURAR Ercan,GÜZELOĞLU Aydın MikroRNA Biyogenezi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 10, no.3 (2015): 211 - 218.
MLA HİTİT Mustafa,KURAR Ercan,GÜZELOĞLU Aydın MikroRNA Biyogenezi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, vol.10, no.3, 2015, ss.211 - 218.
AMA HİTİT M,KURAR E,GÜZELOĞLU A MikroRNA Biyogenezi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2015; 10(3): 211 - 218.
Vancouver HİTİT M,KURAR E,GÜZELOĞLU A MikroRNA Biyogenezi. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2015; 10(3): 211 - 218.
IEEE HİTİT M,KURAR E,GÜZELOĞLU A "MikroRNA Biyogenezi." Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 10, ss.211 - 218, 2015.
ISNAD HİTİT, Mustafa vd. "MikroRNA Biyogenezi". Atatürk Üniversitesi Veteriner Bilimleri Dergisi 10/3 (2015), 211-218.