Yıl: 2015 Cilt: 30 Sayı: 3 Sayfa Aralığı: 523 - 532 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ

Öz:
Bu çalışmada toz metalurjisi yöntemi ile üretilmiş AlSi7 köpüklerin gözenek morfolojisi üzerine B4C ilavesinin etkisi incelenmiştir. Bu amaçla Al içerisinde % 1 TiH2, % 7 Si ve değişik oranlarda (% 2, 4 ve 6) B4C tozları ilave edilerek karıştırılmıştır. Daha sonra karışım tozlar 400 MPa altında sıkıştırılmıştır. Elde edilen blok numuneler ekstrüzyon ve haddeleme işlemlerinden geçirilerek köpürebilir malzemeler üretilmiştir. Üretilen numuneler farklı sıcaklıklarda (690, 710, 730 ve 750 °C ) serbest halde köpürtme işlemine tabi tutulmuştur. Deneysel sonuçlara göre; düşük köpürtme sıcaklıklarında B4C takviyeli numuneler, parçacık içermeyen numunelere oranla daha düşük hacimsel genleşme sergilemiştir. Genleşme değerleri köpürtme sıcaklığındaki artışa bağlı olarak artmıştır. Numunelerin tamamına yakınında 750 °C köpürtme sıcaklığında maksimum oranda hacimsel genleşme değerleri (% 350 - % 400) elde edilmiştir. B4C miktarı ve köpürme sıcaklıktaki artış ile birlikte numunelerde küresellik faktörü ve gözenek boyutlarının arttığı, gözenek sayısının ise azaldığı tespit edilmiştir.
Anahtar Kelime:

THE EFFECT OF B4C ADDITION ON PORE MORPHOLOGY OF THE ALSI7 FOAMS

Öz:
In this study, the effect of B4C addition on pore morphology of the AlSi7 foams produced via powder metallurgy method was examined. For this, 7 % Si, 1 % TiH2 (foaming agent) and B4C powders at various rates (2, 4 and 6 %) were added to the Al powders and then mixed properly. Mixed powders were compacted at 400 MPa and extruded and rolled to produce precursor material. Then produced samples were freely foamed at temperatures between 690 °C and 750 °C in order to produce closed cell metallic foams. As a result of experimental studies, the volumetric expansion rate of B4C reinforced preform materials has been found to be lower than AlSi7 foams. Expansion values was found to be increase with increasing the foaming temperature. The maximum volumetric expansion values (350 % - 400 %) in nearly all samples was obtained at 750 °C foaming temperature. Pore size and sphericity factor were increased with foaming temperature and the amount of B4C in the samples but they reduced the number of pores.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Baumaister, US patent (1992).
  • 2. Yu, C.J., Eifert, H.H., Banhart, J., Baumeister, J., ‘‘Metal foaming by a powder metallurgy method: Production, properties and applications’’, Materials Research Innovations, Cilt 2, No 3, 181–188, 1998.
  • 3. Banhart, J., ‘‘Manufacture, characterization and application of cellular metals and metal foams’’, Progress in Materials Science, Cilt 46, No 6, 559-632, 2001.
  • 4. Baumgärtner, F., Duarte, I., Banhart, J., ‘‘Industrialization of powder compact foaming process’’, Advanced Engineering Materials, Cilt 2, No 4, 168-174, 2000.
  • 5. Banhart, J., ‘‘Metallic foams: challenges and opportunities’’, 3rd Euroconference on foams, emulsions and applications, Delft, Netherlands, 13-20, 5-8 June 2000,
  • 6. Banhart, J., “Manufacturing routes for metallic foams”, Journals of Materials, Cilt 52, No 12, 22-27, 2000.
  • 7. Banhart, J., “Aluminium Foams for lighter vehicles”, International Journal of Vehicle Design, Cilt 37, No 2/3, 114-125, 2005.
  • 8. Kevorkijan, V., Skapin, S. D., Paulin, I., Sustarsic, B., Jenko, M., Lazeta, M., ‘‘Influence of the foaming precursor’s composition and density on the foaming efficiency, microstructure development and mechanical properties of aluminium foams’’, Materials and Technology, Cilt 45, No 2, 95–103, 2011.
  • 9. Degischer, H.P., Krıszt, B., ‘‘Handbook of Cellular Metals: Production, Processing and Applications’’, Wiley-VCH, Weinheim, 2002.
  • 10. Türker, M., ‘‘Production of ceramics reinforced Al foams by powder metallurgy techniques’’, Materials Science Forum, Cilt 672, 39-46, 2011.
  • 11. Sarajan, Z., Sedigh, M., ‘‘Influences of Titanium Hydride (TiH2) Content and Holding Temperature in Foamed Pure Aluminum’’, Materials and Manufacturing Processes, Cilt 24, No 5, 590–593, 2009.
  • 12. Matijasevic-Lux, B., Banhart, J., Fiechter, S., Görke, O., Wanderka, N., ‘‘Modification of titanium hydride for improved aluminium foam manufacture’’, Acta Materialia, Cilt 54, No 7, 1887–1900, 2006.
  • 13. Wübben, T., Stanzick, H., Banhart, J., Odenbach, S., ‘‘Stability of metallic foams studied under microgravity’’, Journal of Physics: Condensed Matter, Cilt 15, No: 1, 427–433, 2002.
  • 14. Zeppelin, F., Hirscher, M., Stanzick, H., Banhart, J., ‘‘Desorption of hydrogen from blowing agents used for foaming metals’’, Composites Science and Technology, Cilt 63, No 16, 2293–2300, 2003.
  • 15. Solórzano, E., Moreno, F. G., Babcsán, N., Banhart, J., ‘‘Thermographic monitoring of aluminium foaming process’’, Journal of Nondestructive Evaluation, Cilt 28, No 3, 141– 148, 2009.
  • 16. Asavavisithchai, S., Opa, A., ‘‘Effect of TiC particles on foamability and compressive properties of aluminium foams’’, Chiang Mai Journal of Science, Cilt 37, No 2, 213-221, 2010.
  • 17. Gökmen, U., Türker, M., ‘‘Al2O3 ilavesinin alüminyum ve alumix 231 esasli metalik köpüğün köpürme özelliklerine etkisi’’, Journal of The Faculty of Engineering and Architecture of Gazi University, Cilt 27, No 3, 651-658, 2012.
  • 18. Güden, M., Yüksel, S., ‘‘SiC-particulate aluminum composite foams produced from powder compacts: foaming and compression behavior’’, Journal of Materials Science, Cilt 41, No 13, 4075–4084, 2006.
  • 19. Kennedy, A. R., Asavavisitchai, S., ‘‘Effect of ceramic particle additions on foam expansion and stability in compacted Al-TiH2 powder precursors’’, Advanced Engineering Materials, Cilt 6, No 6, 400-402, 2004.
  • 20. Kennedy, A.R., Asavavisitchai, S., ‘‘Effects of TiB2 particle addition on the expansion, structure and mechanical properties of PM Al foams’’, Scripta Materialia, Cilt 50, No 1, 115–119, 2004.
  • 21. Uzun, A., Turker, M., ‘‘The investigation of mechanical properties of B4C reinforced AlSi7 foams’’, International Journal of Material Research, Cilt 106, No 9, 970-977, 2015.
  • 22. Duarte, I., Banhart, J., ‘‘A study of aluminium foam formation-kinetics and microstructure’’, Acta Materialia, Cilt 48, No 9, 2349-2362, 2000.
  • 23. Esmaeelzadeh, S., Simchi, A., ‘‘Foamability and compressive properties of AlSi7–3 vol.% SiC–0.5 wt.% TiH2 powder compact’’, Materials Letters, Cilt 62, No 10-11, 1561–1564, 2008.
  • 24. Park, S.H., Hur, B.Y., ‘‘A study on the viscosity and surface tension in molten Al and the effect of additional elements’’, 3rd International Conference on Cellular Metals and Metal Foaming Technology, Berlin, Germany, 123- 128, 23-25 June 2003.
  • 25. Murray, J.L., McAlister, A.J., “The Al-Si (Aluminum-Silicon) system”, Bulletin of Alloy Phase Diagrams, Cilt 5, No 1, 74-75, 1984.
  • 26. Babscan, N., Leitlmeier, D., Degischer, H.P., ‘‘Foamability of particle reinforced aluminum melt’’, Materials Science and Engineering Technology, Cilt 34, No 1, 22-29, 2003.
  • 27. Kadoi, K., Nakae, H., ‘‘Relationship between foam stabilization and physical properties of particles on aluminum foam production’’, Materials Transactions, Cilt 52, No 10, 1912- 1919, 2011.
  • 28. Davis, J. R., “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International, 1993.
  • 29. Campana, F., Pilone, D., “Effect of wall microstructure and morphometric parameters on the crush ehavior of Al alloy foams”, Materials Science and Engineering A, Cilt 479, No 1-2, 58–64, 2008.
  • 30. Simancik, F., Behulova, K., Bors, L., “Effect of ambient atmosphere on metal foam expansion”, 2nd International Conference on Cellular Metals and Metal Foaming Technology, Bremen, Germany, 89, 18-20 June 2001.
APA UZUN A, TÜRKER M (2015). ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. , 523 - 532.
Chicago UZUN ARIF,TÜRKER Mehmet ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. (2015): 523 - 532.
MLA UZUN ARIF,TÜRKER Mehmet ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. , 2015, ss.523 - 532.
AMA UZUN A,TÜRKER M ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. . 2015; 523 - 532.
Vancouver UZUN A,TÜRKER M ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. . 2015; 523 - 532.
IEEE UZUN A,TÜRKER M "ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ." , ss.523 - 532, 2015.
ISNAD UZUN, ARIF - TÜRKER, Mehmet. "ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ". (2015), 523-532.
APA UZUN A, TÜRKER M (2015). ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30(3), 523 - 532.
Chicago UZUN ARIF,TÜRKER Mehmet ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30, no.3 (2015): 523 - 532.
MLA UZUN ARIF,TÜRKER Mehmet ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.30, no.3, 2015, ss.523 - 532.
AMA UZUN A,TÜRKER M ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2015; 30(3): 523 - 532.
Vancouver UZUN A,TÜRKER M ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2015; 30(3): 523 - 532.
IEEE UZUN A,TÜRKER M "ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 30, ss.523 - 532, 2015.
ISNAD UZUN, ARIF - TÜRKER, Mehmet. "ALSİ7 KÖPÜKLERİN GÖZENEK MORFOLOJİSİ ÜZERİNE B4C İLAVESİNİN ETKİSİ". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 30/3 (2015), 523-532.