Yıl: 2020 Cilt: 8 Sayı: 2 Sayfa Aralığı: 281 - 292 Metin Dili: Türkçe DOI: doi: 10.33715/inonusaglik.727031 İndeks Tarihi: 01-11-2020

RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ

Öz:
Metotreksat (MET), akciğer, meme kanserleri ve lenfoma gibi çeşitli malignitelerin tedavisinde kullanılmaktadır. Bu neoplastik ajanın hepatorenal toksisite gibi çeşitli komplikasyonlara neden olması onun tedavide kullanımını sınırlamaktadır. Antiinflamatuvar etkileri çok iyi bilinen kurkumin (KUR)’in hepatorenal toksisite üzerindeki koruyucu etkileri literatürde ifade edilmiştir. Bu çalışmada metotreksat ile indüklenen oksidatif stres, proinflamatuar yanıtın kurkumin ile baskılanabileceğini varsaydık. Bu çalışma, metotreksat kaynaklı sitotoksisite ve oksidatif strese karşı kurkuminin koruyucu rolünü araştırmak için planlandı. Bu çalışmada metotreksat kaynaklı renal toksisite ve sonrasında gelişen moleküler olayları in-vitro araştırmak üzere fare böbrek kortikal toplama kanal hücreleri (mpkCCDc14) kullanıldı. Gruplar, Kontrol, KUR (10 μM ve 24 saat), MET (5 μM ve 24 saat) ve MET+KUR olarak dizayn edildi. Metotreksat kaynaklı oksidatif stres, mpkCCDc14 hücrelerinde mitokondriyal membran depolarizasyonu (MMD), sitozolik reaktif oksijen türleri (ROS) üretimi, apopitoz ve kaspaz-3, kaspaz-9 aktivasyon düzeyleri belirlenerek değerlendirildi. MET, oksidatif stresin hücre içinde artmasına neden olmasına rağmen, bu kurkumin tarafından azaltılmıştır. Kurkumin tedavisi, mitokondriyal disfonksiyonu düzenleyerek hücrelerde ROS oluşumunu bastırdı. Metotreksata maruz kalan hücrelerde apoptoz, kaspaz-3 ve kaspaz-9 aktiviteleri artmıştır. Bununla birlikte bu durum, kurkumin tedavisi ile modüle edildi. Sonuç olarak, metotreksat ile indüklenen oksidatif stres hücre hasarına ve proenflamatuar yanıta yol açarak kronik böbrek hastalığının ilerlemesinde mpkCCDc14 hücrelerinin rolünü güçlendirir. Kurkumin antioksidan, antienflamatuar ve anti-apopitotik etki ederek metotreksat kaynaklı sitozolik toksisiteye karşı yardımcı bir tedavi olabilir.
Anahtar Kelime:

Methotrexate-Induced Cytotoxicity in Renal Cells: The Protective Role of Curcumin

Öz:
Methotrexate (MET) is used in the treatment of various malignancies such as lung, breast cancers and lymphoma. The fact that it causes various complications such as hepatorenal toxicity limits its usage in treatment. The hepatorenal toxicity protective effects of Curcumin (CUR), whose anti-inflammatory effects are well known, have been expressed in the literature. In this study, we assumed that methotrexate-induced oxidative stress and proinflammatory response can be suppressed with curcumin treatment. This study was planned to investigate the protective role of curcumin against methotrexate-induced cytotoxicity and oxidative stress. In this study, mouse kidney cortical collection duct cells (mpkCCDc14) were used to investigate methotrexate-induced renal toxicity and subsequent molecular events in-vitro. The groups were designed as Control, CUR (10 μM and 24 hours), MET (5 μM and 24 hours) and MET+CUR. MET-induced oxidative stress was evaluated by determining mitochondrial membrane depolarization (MMD), cytosolic reactive oxygen species (ROS) production, apoptosis and caspase-3, caspase-9 activation levels in mpkCCDc14 cells. Although MET caused intracellular oxidative stress increase, this has been reduced by curcumin. Curcumin therapy regulated mitochondrial dysfunction and suppressed ROS formation in cells. Apoptosis, caspase-3 and caspase-9 activities have been increased in MET exposed cells. However, this condition was modulated by CUR therapy. As the result, MET-induced oxidative stress strengthens the role of mpkCCDc14 cells in the progression of chronic kidney disease, by leading to cell damage and creating a proinflammatory response. Curcumin can be an adjunctive therapy against methotrexate-induced cytosolic toxicity by antioxidant, anti-inflammatory and anti-apoptotic effects.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anand, P., Kunnumakkara, A. B., Newman, R. A., Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Mol. Pharm., 4(6), 807-818.
  • Asvadi, I., Hajipour, B., Asvadi, A., Asl, N. A., Roshangar, L., Khodadadi, A. (2011). Protective effect of pentoxyfilline in renaltoxicity after methotrexate administration. European Reviewfor Medical and Pharmacological Sciences, 15, 1003–1009.
  • Atessahin, A., Yilmaz, S., Karahan, I., Ceribasi, A. O., Karaoglu, A. (2005). Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology, 212 (2), 116-123.
  • Babiak, R. M., Campello, A. P., Carnieri, E. G., Oliveira, M. B. (1998). Methotrexate: pentose cycle and oxidative stress. CellBiochemistry and Function, 16, 283–293.
  • Balasubramanayam, M., Adaikala Koteswari, A., Sampath Kumar, R., Finny Monickaraj, S., Uma Maheswari, J., Mohan, V. (2003). Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J. Biosci., 28 (6), 715-721.
  • Biswas, S. K., McClure, D., Jimenez, L. A., Megson, I. L., Rahman, I. (2005). Curcumin induces glutathione biosynthesis and inhibits NF-kB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxidants redox Signal., 7 (1-2), 32-41.
  • Choudhury, R. C., Ghosh, S. K., Palo, A. K. (2000). Cytogenetic toxicity of methotrexate in mouse bone marrow. Environ. Toxicol. Pharmacol., 8(3), 191-196.
  • Corona-Rivera, A., Urbina-Cano, P., Bobadilla-Morales, L., Vargas-Lares Jde, J., Ramirez-Herrera, M. A., Mendoza-Magaua, M. L., . . . Corona-Rivera, J. R. (2007). Protective in vivo effect of curcumin on copper genotoxicity evaluated by comet and micronucleus assay. JAppl Genet., 48(4), 389-96.
  • El-Sheikh, A. A., Morsy, M. A., Abdalla, A. M., Hamouda, A. H., Alhaider, I. A. (2015). Mechanisms of thymoquinone hepatorenal protection in methotrexateinduced toxicity in rats. Mediators Inflamm., 112.
  • Farruggio, S., Cocomazzi, G., Marotta, P., Romito, R., Surico, D., Grossini, E. (2020). Genistein and 17βEstradiol Protect Hepatocytes from Fatty Degeneration by Mechanisms Involving Mitochondria. Inflammasome and Kinases Activation, Cell Physiol Biochem, 54(3), 401-416.
  • Fiorillo, C., Becatti, M., Pensafini, A., Cecchi, C., Lanzilao, L., Donzelli, G., . . . Nassi, P. (2008). Curcumin protects cardiac cells against ischemia-reperfusion injury: effects on oxidative stress, NF-kB, and JNK pathways. Free Radic. Biol. Med., 45, 839.
  • Huang, B., Liu, J., Fu, S., Zhang, Y., Li, Y., He, D., . . . X, Liu. (2020). D. α-Cyperone Attenuates H(2)O(2)Induced Oxidative Stress and Apoptosis in SH-SY5Y Cells via Activation of Nrf2, Front Pharmacol, 8(11), 281.
  • Huang, C. F., Cui, X. Q., Yang, C. F., Wang, X. B., Xu, H., Sha, Y. Y., Niu, J. Z. (2011). Effects of curcumin on micronuclei formation and chromosome aberration induced by cyclophosphamide in mice. J. Traditional Chin. Med. Pharm, 6, 42.
  • Jordan, P., Carmo-Fonseca, M. (200). Molecular mechanisms involved in cisplatin cytotoxicity, Cell. Mol. Life Sci., 57, 1229-1235.
  • Joshi, D. C., Bakowska, J. C. (2011). Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp., 51, 2704.
  • Iwona, P. C., Monika, G. G., Dorota, N. C., Mariola, H., Marcin, S., Magdalena, I., . . . Jarosław, D. (2020). Pioglitazone as a modulator of the chemoresistance of renal cell adenocarcinoma to methotrexate. Oncology Reports, 43(3), 1019-1030.
  • Kawamori, T., Lubet, R., Steele, V. E., Kelloff, G. J., Kaskey, R. B., Rao, C. V., Reddy, B. S. (1999). Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res., 59(3),597-601.
  • Keil, V. C., Funke, F., Zeug, A., Schild, D., Müller, M. (2011). Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch., 462, 693-708.
  • Kliem, C., Merling, A., Giaisi, M., Köhler, R., Krammer, P. H., Li-Weber, M. (2012). Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation, J Biol Chem., 287(13), 10200–10209.
  • Liu, F., Ni, W., Zhang, J., Wang, G., Li, F., Ren, W. (2017). Administration of curcumin protects kidney tubules against renal ischemia-reperfusion injury (RIRI) by modulating nitric oxide (NO) signaling pathway. Cell Physiol Biochem, 44(1), 401–411.
  • Menon, V. P., Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Springer, 105-125.
  • Mandil, R., Prakash, A., Rahal, A., Singh, S. P, Sharma, D., Kumar, R., Garg, S. K. (2020). In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol. BMC Pharmacol Toxicol, 21(1), 29.
  • Mora, L. D. O., Antunes, L. M. G., Francescato, H. D. C, Bianchi, M. D. L. P. (2002). The effects of oral glutamine on cisplatin-induced genotoxicity in Wistar rat bone marrow cells. Mutat. Res., 518(1), 6570.
  • Mora, L. D. O., Antunes, L. M. G., Francescato, H. D. C., Bianchi, M. D. L. P. (2003). The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacol. Res., 47(6), 517-522.
  • Murray, M. T., Pizzorno, J. E. (1999). Curcuma longa (turmeric). In: Textbook of Natural Medicine. Churchill Livingstone Inc., 689.
  • Norris, I., Sriganth, P., Premalatha, B. (1999). Dietary curcumin with cisplatin administration modulates tumour marker indices in experimental fibrosarcoma. Pharmacol Res., 39(3), 175-179.
  • Palipoch, S., Punsawad, C., Chinnapun, D., Suwannalert, P. (2014). Amelioration of cisplatin-induced nephrotoxicity in rats by curcumin and a-tocopherol. Trop. J. Pharm. Res., 12(6), 973-979.
  • Said Salem, N. I., Noshy, M. M., Said, A. A. (2017). Modulatory effect of curcumin against enotoxicity and oxidative stress induced by cisplatin and methotrexate in male mice. Food Chem Toxicol, 105, 370376.
  • Serpeloni, J. M., Almeida, M. R., Mercadante, A. Z., Bianchi, M. L. P., Antunes, L. M. G. (2013). Effects of lutein and chlorophyll b on GSH depletion and DNA damage induced by cisplatin in vivo. Hum. Exp. Toxicol., 32 (8), 828-836.
  • Sreejayan, N., Rao, M. N. (1996). Free radical scavenging activity of curcuminoids. Arzneim., 46(2), 169171.
  • Surh, Y. J., Chun, K. S. (2007). Cancer chemopreventive effects of curcumin. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Springer, 149-172.
  • Tian, F., Fan, T., Zhang, Y., Jiang, Y., Zhang, X. (2012). Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NFkB signaling pathway in vitro and in vivo. Acta biochimica biophysica Sinica, 44(10), 847-855.
  • Tirkey, N., Kaur, G., Vij, G., Chopra, K. (2005). Curcumin, a diferuloylmethane, attenuates cyclosporineinduced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacol, 5(1), 15.
  • Tousson, E., Atteya, E., El-Atrash, E., Jeweely, O. I. (2014). Abrogation by Ginkgo Byloba leaf extract on hepatic and renal toxicity induced by methotrexate in rats. J Cancer Res Treat, 2(3), 44–51.
  • Ureshino, R. P., Erustes, A. G., Bassani, T. B., Wachilewski, P., Guarache, G. C., Nascimento, A. C., . . . Pereira, G. J. D. S. (2019). The Interplay between Ca2+ signaling pathways and neurodegeneration. Int J Mol Sci., 20(23), E6004.
  • Weijl, N. I., Elsendoorn, T. J., Lentjes, E. G. W. M., Hopman, G. D., Wipkink-Bakker, A., Zwinderman, A. H. (2004).0 Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebocontrolled study. Eur.J. Cancer, 40(11), 1713-1723.
  • Widemann, B. C., Adamson, P. C. (2006). Understanding and managing methotrexate nephrotoxicity. Oncol, 11(6), 694-703.
  • Yao, L., Yang, L., Song, H., Liu, T. G., Yan, H. (2020 ). Silencing of lncRNA XIST suppresses proliferation and autophagy and enhances vincristine sensitivity in retinoblastoma cells by sponging miR-204-5p. Eur Rev Med Pharmacol Sci., 24(7), 3526-3537.
APA ÇİĞ B (2020). RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. , 281 - 292. doi: 10.33715/inonusaglik.727031
Chicago ÇİĞ BILAL RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. (2020): 281 - 292. doi: 10.33715/inonusaglik.727031
MLA ÇİĞ BILAL RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. , 2020, ss.281 - 292. doi: 10.33715/inonusaglik.727031
AMA ÇİĞ B RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. . 2020; 281 - 292. doi: 10.33715/inonusaglik.727031
Vancouver ÇİĞ B RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. . 2020; 281 - 292. doi: 10.33715/inonusaglik.727031
IEEE ÇİĞ B "RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ." , ss.281 - 292, 2020. doi: 10.33715/inonusaglik.727031
ISNAD ÇİĞ, BILAL. "RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ". (2020), 281-292. https://doi.org/doi: 10.33715/inonusaglik.727031
APA ÇİĞ B (2020). RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8(2), 281 - 292. doi: 10.33715/inonusaglik.727031
Chicago ÇİĞ BILAL RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi 8, no.2 (2020): 281 - 292. doi: 10.33715/inonusaglik.727031
MLA ÇİĞ BILAL RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, vol.8, no.2, 2020, ss.281 - 292. doi: 10.33715/inonusaglik.727031
AMA ÇİĞ B RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi. 2020; 8(2): 281 - 292. doi: 10.33715/inonusaglik.727031
Vancouver ÇİĞ B RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ. İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi. 2020; 8(2): 281 - 292. doi: 10.33715/inonusaglik.727031
IEEE ÇİĞ B "RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ." İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 8, ss.281 - 292, 2020. doi: 10.33715/inonusaglik.727031
ISNAD ÇİĞ, BILAL. "RENAL HÜCRELERDE METOTREKSAT KAYNAKLI SİTOTOKSİSİTE: KURKUMİN’İN KORUYUCU ROLÜ". İnönü üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi 8/2 (2020), 281-292. https://doi.org/doi: 10.33715/inonusaglik.727031