Yıl: 2020 Cilt: 25 Sayı: 3 Sayfa Aralığı: 488 - 498 Metin Dili: Türkçe DOI: 10.37908/mkutbd.793222 İndeks Tarihi: 09-03-2021

Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi

Öz:
Amaç: Çalışmada, mikoriza (ROOTS-novozymes endomycorrhiza (VAM) fungus (Glomus spp.)) ve artan tuzdozlarının biber bitkisinin (Capsicum annuum L.) kök vegövde dokularının; hormon, toplam fenolik ve organikasit içerikleri ile toplam antioksidan kapasitesi üzerineetkisini belirlemek amaçlanmıştır.Yöntem ve Bulgular: Serada tesadüf blokları denemedeseninde göre yürütülen çalışmada, toprakdoldurulmuş saksılardaki biber bitkilerine dört farklıdozda tuz (T0: 0, T50: 50, T100: 100 ve T150: 150 mM NaCl) ile mikorizalı ve mikorizasız olmak üzere mikorizanın ikidozu (M0: 0, M100: 100 adet spor/bitki) uygulanmıştır.Çalışmada, kök ve gövde dokularında giberilik asit (GA),salisilik asit (SA) ve indol asetik asit (IAA) düzeyleri artantuz dozlarının etkisiyle istatistiksel olarak önemlidüzeyde azalmıştır. Biber bitkisi absisik asit (ABA) içeriğimikoriza uygulanmamış bitkilerin kök ve gövdedokularında tuz dozlarındaki artış ile önemli düzeydeartmışken, mikoriza uygulanan bitkilerde tuzdozlarındaki artış ABA içerini etkilememiştir. Sadece 50mM tuz dozunda belirlenen ABA içeriği mikorizauygulanmışlarda mikorizasızlara göre önemli düzeydedaha yüksek belirlenmiştir. Toplam fenolik içeriği veantioksidan kapasitesi tuz stresinin etkisiyle kök ve gövdedokularında önemli düzeyde azalmışken, 50 mM NaCluygulanmış mikorizalı bitkilerde en yüksek değerdebelirlenmiştir. Organik asit içerikleri, gövde tartarik vemaleik asit ile kök maleik asit hariç, uygulanan tuzdozlarındaki artış ile kök ve gövde dokularında kontrolbitkilerine göre artmıştır. Mikoriza uygulanmış bitkileringövde bütirik, malonik ve malik asit içerikleri mikorizauygulanmamışlar daha yüksek belirlenmişken, kökdokularında ise malonik ve malik asit içerikleri mikorizalıolanlarda daha yüksek belirlenmiştir.Genel Yorum: Mikorizanın özellikle 50 mM tuz dozundagövde ve kök dokularında toplam fenolik ve antioksidaniçeriklerinin yanı sıra ABA düzeyini arttırmasından dolayıstrese karşı tolerans göstermede etkili olduğu, ancakdaha yüksek tuz konsantrasyonlarında bu olumluetkisinin bozulduğu belirlenmiştir.Çalışmanın Önemi ve Etkisi: Sonuç olarak, mikorizanınılımlı tuz stresinde bitki toleransını arttırdığı ancak,yüksek ve çok yüksek tuz tuz streslerinde etkisiz kaldığısöylenebilir.
Anahtar Kelime:

The effect of different doses of salt and mycorrhiza applications on hormone, antioxidant, phenolic and organic acid contents in peppers

Öz:
Aims: In the study, mycorrhiza (ROOTS-novozymes endo-mycorrhiza (VAM) fungus (Glomus spp.)) and increasing salt doses of the root and stem tissues of pepper plant (Capsicum annuum L.); It was aimed to determine the effects on hormone, total phenolic and organic acid contents and total antioxidant capacity. Methods and Results: In the study conducted in the greenhouse according to the random block design, pepper plants were applied to the soil in four different doses of salt (T0: 0, T50: 50, T100: 100 and T150: 150 mM NaCl) and two doses of mycorrhizal (M0: 0, M100: 100 spores / plant) were applied, with and without mycorrhiza. In the study, the levels of GA, SA and IAA in the root and stem tissues decreased statistically significantly with the effect of increasing salt doses. ABA content of pepper plant increased significantly with the increase in salt doses in root and stem tissues of plants not applied mycorrhiza, while the increase in salt doses in plants treated with mycorrhiza did not affect the content of ABA. ABA content, which was determined at only 50 mM salt dose, was found to be significantly higher in those applied to mycorrhiza than those without mycorrhiza. While the total phenolic content and antioxidant capacity decreased significantly in root and stem tissues due to the salt stress, it was found to be the highest in 50 mM NaCl applied mycorrhizal plants. Organic acid contents increased in root and stem tissues compared to control plants with the increase in the applied salt doses, except stem tartaric and maleic acid and root maleic acid. Stem butyric, malonic and malic acid contents of plants treated with mycorrhiza were determined higher than those without mycorrhiza, while malonic and malic acid contents of root tissues were higher in those with mycorrhiza. Conclusions: It has been determined that mycorrhiza is effective in showing stress tolerance due to the increase in total phenolic and antioxidant content as well as ABA level in the stem and root tissues at 50 mM salt dose, but this positive effect is impaired at higher salt concentrations. Significance and Impact of the Study: As a result, it can be said that the mycorrhiza improves plant tolerance at moderate salt stress, but is ineffective at high and very high salt stress.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Allison LE, Moodie CD (1965) Carbonate. In: Method of Soil Analysis, Part 2 (Ed. Black CA), American Society of Agronomy, Inc. Madison, Winconsin, USA, pp 1379–1396.
  • Altunlu H (2019) The effects of mycorrhiza application on growth and antioxidative enzymes of capia type pepper (Capsicum annuum L.) seedling under salty conditions, Ege Uni. Zir. Fak. Derg. 56(2): 139-146.
  • Anonim (2018) Tuzlu ve Alkali Alanlarda Kullanılabilecek Bazı Bitki Türlerinin Tespiti ve Adaptasyonu Projesi Sonuç Raporu, T.C. Tarım ve Orman Bakanlığı Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü, https://www.tarimorman.gov.tr/CEM/Belgeler/yay% C4%B1nlar/yay%C4%B1nlar%202019/KIRSEHIR%20T uzlu%20Alkali%20Sonuc%20Raporu%20.pdf (Erişim tarihi: 18 Eylül 2020)
  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13: 17–42.
  • Ashraf MY, Bhatti AS (2000) Effect of salinity on growth and chlorophyll content in rice. Pakistan J. Sci. Ind. Res. 43(2): 130-131.
  • Başak H, Kasım R, Okay FY (2011) The effect of endomycorrhiza (VAM) treatment on growth of tomato seedling grown under saline conditions. African J. Agri. Res. 6(11): 2532-2538.
  • Bourgou S, Kchouk ME, Bellila A, Marzouk B (2010) Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Horticulturae 853: 57- 60.
  • Bouyoucos GD (1951) A recablibration of the hydrometer method for making mechanical analysis of the soil. Agronomy Journal 43: 434–38.
  • Bremner JM (1996) Nitrogen total, In: Methods of Soil Analysis Part 3-Chemical Methods (Eds. Sparks DL), SSSA Book Series Number 5, SSSA. Madison,WI, pp 1085–112.
  • Caron M (1989) Potential use of mycorrhizae in control of soil-borne diseases. Canad J. Plant Pathol. 11: 177– 179.
  • Carvalho LM, Correia PM, Martins-Louçao AM (2004) Arbuscular mycorrhizal fungal propogules in a salt marsh. Mycorrhiza 14: 165-170.
  • Cawthray GR (2003) An improved reversed-phase liquid chromatographic method of the analysis of lowmolecular mass organic acids in plant root exudates. J. Chromatogr. A. 1011(12): 233-240.
  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 44(3): 501-509.
  • Danneberg G, Latus C, Zimmer W, Hundeshagen B, Schneider-Poetsch HJ, Bothe H (1992) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J. Plant Physiol. 141: 33-39.
  • Davies PJ (1995) The plant hormones; Their nature, occurence and functions, In: Plant Hormones (Ed. Davies PJ) Kluwer Academic Publishers, Boston. pp 1- 39.
  • Dinkelaker B, Hengeler G, Neumann G, Eltrop L, Marschner H (1997) Root exudates and mobilization of nutrients. In: Trees-contributions to modern tree physiology (Eds. Rennenberg H, Eschrich W, Ziegler H), Backhuys, Leiden. pp 441–452.
  • Dutt S, Sharma SD, Kumar P (2013) Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (Prunus armeniaca L.). Scientia Horticulturae 155: 97–104.
  • Düzgüneş O, Kesici T, Kavuncu O, Gürbüz F (1987) Araştırma ve Deneme Metotları. Ankara Üni., Ziraat Fakültesi Yayınları, Ankara, 381s.
  • Egle K, Romer W, Keller H (2003) Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie 23: 511– 518.
  • Emirzeoğlu C, Başak H (2020) Orta Anadolu biber genotiplerinin farklı tuz konsantrasyonlarına tolerans düzeylerinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bil. Derg. 6(2): 129-140.
  • Es-Safi NE, Kollman A, Khlifi S, Ducrot PH (2007) Antioxidative effect of compounds isolated from Globularia alypum L. structure–activity relationship. LWT. 40: 1246–1252.
  • Greene JG, Porter RH, Eller RV, Greenamyre JT (1993) Inhibition of succinate dehydrogenase by malonic acid produces an ‘excitotoxic’ lesion in rat striatum. Neurochemistry 61: 1151-1154.
  • Guo R, Shi L, Ding X, Hu Y, Tian S, Yan D, Yang Y (2010) Effects of saline and alkaline stress on germination, seedling growth, and ion balance in wheat. Agronomy J. 102(4): 1252-1260.
  • Gupta A, Dixit SK, Senthil-Kumar M (2016) Droughtstress predominantly endures Arabidopsis thaliana to Pseudomonas syringae infection. Front. Plant Sci. 7: 808.
  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages, In: Ecophysiology and Responses of Plants under Salt Stress (Eds: Ahmad P, Prasad MNV, Azooz MM), Springer-Verlag, New York. pp 25-87.
  • Hatzig S, Hanstein S, Schubert S (2010) Apoplast acidification is not a necessary determinant for the resistance of maize in the first phase of salt stress. J. Plant Nutr. Soil Sci. 173: 559–562.
  • Horgan R, Kramers MR (1979) High performance liquid chromatogaphy of cytokinins. J. Chromatopraphy 173: 263-270.
  • Iwasaki M, Fukamachi H, Imai A, Nonaka K (2011) Effects of summer and autumn water stress on fruit quality of medium-late maturing citrus ‘Harehime’. Hort. Res. 10: 191-196.
  • Jackson M (1958) Soil Chemical Analysis. Prentice-Hall Inc., Englewood Cliffs, New Jersey, USA. pp 498
  • Juniper S, Abbott L (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza, 4: 45–57.
  • Kalefetoğlu T, Ekmekçi Y (2005) The effect of drought on plant sand tolerance mechanisms. G. U. J. Sci. 18(4): 723-740.
  • Kıpçak S, Ekincialp A, Erdinç Ç, Kabay T, Şensoy S (2019) Tuz stresinin farklı fasulye genotiplerinde bazı besin elementi içeriği ile toplam antioksidan ve toplam fenol içeriğine etkisi. YYÜ Tar. Bil. Derg. 29(1): 136- 144.
  • Kim YC, Cho MH, Kim SJ, Jang H (2008) The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear 264, 204.
  • Knudsen D, Peterson GA, Pratt PF (1982) Lithium, sodium and potassium, In: Methods of soil analysis-Part 2 (Eds. Page AL, Miller RH, Keeney DR), American Society of Agronomy, Madison, USA. pp 225–246.
  • Koshimizo K, Iwamura H (1986) Chemistry of Plant Hormones, (Editor: Takahashi N), CRC Press Inc., Florida. 154-199.
  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 45: 244-249.
  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soci. American J., 42: 421–28.
  • López-Ráez JA, Flors V, García JM and Pozo MJ (2010) AM symbiosis alters phenolic acid content in tomato roots. Plant Sign. Behav. 5: 1138-1140.
  • Ludwig-Müller J (2010) Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi, In: Arbuscular Mycorrhizas: Physiology and Function (Eds. Koltai H and Kapulnik Y), Springer, Netherlands. 169–190.
  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43: 491–500.
  • Martín-Rodríguez JA, Ocampo JA, Molinero-Rosales N, Tarkowská D, Ruíz-Rivero O and García-Garrido JM (2015) Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiol. Plant 154: 66–81.
  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular–arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol. Biochem. 30: 1639–1646.
  • Meixner C, Ludwig-Muller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222: 709–715.
  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. Environ. Stud. 15(4): 523–530.
  • Miransari M (2012) Role of phytohormone signaling during stress, In: Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change (Eds. Ahmad P., Prasad M), Springer, New York. pp 381–393.
  • Mohammad A, Mittra B (2013) Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions. Arch. Agron. Soil Sci. 59(2): 173-183.
  • Morris JW, Doumas P, Morris R, Zaer JB (1990) Cytokinins in vegetative and reproductive buds of Pseudotsuga menziesii. Plant Physiol. 9: 67-71.
  • Muchovej RM (2001) Importance of mycorrhizae for agricultural crops. University of Florida, Extension Instude of Food Agricultural Sciences, SS-AGR-170.
  • Olsen SR, Cole CV, Waterable FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USPA Circular No: 939, Washington D.C.
  • Orujei Y, Shabani L, Sharifi-Tehrani M (2013) Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russ. J. Plant Physl. 60: 855–860
  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol. Environ. Saf. 60: 324–349.
  • Prakash L, Prathapasenan G (1990) NaCl and gibberellic acid induced changes in the content of auxin, the activity of cellulose and pectin lyase during leaf growth in rice (Oryza sativa). Ann. Bot. 365: 251-257.
  • Rivas-Ubach A, Sardans J, Perez-Trujillo M, Estiarte M, Penuelasa J (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc. Natl. Acad. Sci. 109(11): 4181–4186.
  • Ruiz MJ, Rivero MR, Lo´pez-Cantarero I, Romero R (2003) Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation 41: 173–177.
  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13: 307–317.
  • Sannazzaro AI, Echeverria M, Alberto EO, Ruiz OA, Menendez AB (2007) Modulation of polyamine balance in lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol. Biochem. 45: 39-46.
  • Shams M, Yıldırım E, Ekinci M, Turan M, Dursun E, Parlakova F, Kul R (2016) Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence systems in lettuce under salt stress. Hortic. Environ. Biotech. 57(3): 225-231.
  • Sharma MP, Adholeya A (2004) Effect of arbuscular mycorrhizal fungi and phosphorus fertilization on the post vitro growth and yield of micropropagated strawberry grown in a sandy loam soil. Can. J. Bot. 82(3): 322–328.
  • Sharma N, Aggarwal A, Yadav K (2017) Arbuscular mycorrhizal fungi enhance growth, physiological parameters and yield of salt stressed Phaseolus mungo (L.) Hepper. European J. Environ. Sci. 7(1): 5- 13.
  • Sheng M, Tang M, Zhang FF, Huang YH (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21: 423–430.
  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acidmediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol. Plant 31: 969–977.
  • Siddiqui M, Chand M, Bhoday J, Tekkis P, Abulafi AM, Brown G (2015) Correlation between MRI Detected Extra-Mural Vascular Invasion (mrEMVI) in Rectal Cancer and Metastatic Disease: a Meta-Analysis. PROSPERO 2015 CRD42015027923 Available from: https://www.crd.york.ac.uk/prospero/display_recor d.php?ID=CRD42015027923 (Erişim tarihi: 18 Eylül 2020)
  • Smith S, Read DJ (1997) Mycorrhizal Symbiosis. Second Edition. Academic Press, London. pp 605.
  • Sneha S, Rishi A, Dadhich A, Chandra S (2013) Effect of salinity on seed germination, accumulation of proline and free amino acid in Pennisetum glaucum (L.) R. Br. Pak. J. Biol. Sci. 17: 877-881.
  • Surender Reddy P, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kavi Kishor PB (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol. Biochem. 94: 104-113.
  • Şensoy S, Demir S, Turkmen O, Erdinc Ç, Savur O (2007) Responses of some different pepper (C. annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi, Scientia Horticulturae 113: 92–95.
  • Takahama U, Oniki T (1997) Enhancement of peroxidase‐ dependent oxidation of sinapyl alcohol by an apoplastic component, 4‐coumaric acid ester isolated from epicotyls of Vigna angularis L. Plant and Cell Physiology 38: 456–462.
  • Tambussi EA, Bartoli CG, Beltrano J, Guiamet JJ, Araus JL (2000) Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiologia Plantarum 108: 398–404.
  • Usha K, Saxena A, Singh B (2004) Rhizosphere dynamics influenced by arbuscular mycorrhizal fungus (Glomus deserticola) and related changes in leaf nutrient status and yield of Kinnow mandarin {King (Citrus nobilis)×Willow Leaf (Citrus deliciosa)}. Aust. J. Agric. Res. 55: 571–576.
  • Vural H, Eşiyok D, Duman İ (2000) Kültür Sebzeleri. Ege Üniversitesi Basımevi, İzmir. 440s.
  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. Agric. Food Chem. 51: 2548- 2554.
  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS ONE 13(4): e0196408.
  • Yang C, Chong J, Kim C, Li C, Shi D, Wang D (2007) Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil 294: 263–276.
  • Zhang YF, Feng G, Li XL (2003) The effect of arbuscular mycorrhizal fungi on the components and concentrations of organic acids in the exudates of mycorrhizal red clover. Acta Ecol. Sin. 23: 30–37.
  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.
  • Zolman BK, Martinez N, Millius A, Adham AR, Bartel B (2008) Identification and characterization of Arabidopsis indole-3-butyric acid response mutants defective in novel peroxisomal enzymes. Genetics 180: 237–251.
APA Çimrin K, BAŞAK H, TURAN M (2020). Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. , 488 - 498. 10.37908/mkutbd.793222
Chicago Çimrin Kerim Mesut,BAŞAK HAKAN,TURAN Metin Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. (2020): 488 - 498. 10.37908/mkutbd.793222
MLA Çimrin Kerim Mesut,BAŞAK HAKAN,TURAN Metin Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. , 2020, ss.488 - 498. 10.37908/mkutbd.793222
AMA Çimrin K,BAŞAK H,TURAN M Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. . 2020; 488 - 498. 10.37908/mkutbd.793222
Vancouver Çimrin K,BAŞAK H,TURAN M Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. . 2020; 488 - 498. 10.37908/mkutbd.793222
IEEE Çimrin K,BAŞAK H,TURAN M "Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi." , ss.488 - 498, 2020. 10.37908/mkutbd.793222
ISNAD Çimrin, Kerim Mesut vd. "Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi". (2020), 488-498. https://doi.org/10.37908/mkutbd.793222
APA Çimrin K, BAŞAK H, TURAN M (2020). Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online), 25(3), 488 - 498. 10.37908/mkutbd.793222
Chicago Çimrin Kerim Mesut,BAŞAK HAKAN,TURAN Metin Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online) 25, no.3 (2020): 488 - 498. 10.37908/mkutbd.793222
MLA Çimrin Kerim Mesut,BAŞAK HAKAN,TURAN Metin Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online), vol.25, no.3, 2020, ss.488 - 498. 10.37908/mkutbd.793222
AMA Çimrin K,BAŞAK H,TURAN M Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online). 2020; 25(3): 488 - 498. 10.37908/mkutbd.793222
Vancouver Çimrin K,BAŞAK H,TURAN M Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi. Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online). 2020; 25(3): 488 - 498. 10.37908/mkutbd.793222
IEEE Çimrin K,BAŞAK H,TURAN M "Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi." Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online), 25, ss.488 - 498, 2020. 10.37908/mkutbd.793222
ISNAD Çimrin, Kerim Mesut vd. "Farklı dozlarda tuz ve mikoriza uygulamalarının biberde hormon, antioksidan, fenolik ve organik asit içeriklerine etkisi". Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online) 25/3 (2020), 488-498. https://doi.org/10.37908/mkutbd.793222