Yıl: 2021 Cilt: 5 Sayı: 3 Sayfa Aralığı: 271 - 278 Metin Dili: Türkçe İndeks Tarihi: 05-10-2021

Siliopatiler ile Birlikte Olan Retina Hastalıkları

Öz:
Siliopatiler, silia organeli taşıyan hücreleri etkileyen bir grup hastalıktır. Retina tutulumu sık görülür. Retina fotoreseptörlerinin dış parçaları silialardan oluşmaktadır. Leber doğumsal amarozisi ve retinitis pigmentoza gibi özellikle fotoreseptörlerdeki siliaları etkileyen fonksiyonel bozukluklar sendrom olmayan siliopatiler olarak sınıflandırılır. Usher sendromu,Joubert sendromu, Meckel-Gruber sendromu, Senior-Loken sendromu, Sjögren-Larsson sendromu, Bardet-Biedl sendromuve Alstrom sendromu gibi fotoreseptörler ile birlikte çok sayıda başka dokuların birlikte etkilendiği durumlar ise sendromolan siliopatileri oluşturmaktadır. Bu hastalıklarda altta yatan patolojik mekanizmalar henüz tümüyle aydınlatılmış değildir.Belirtileri güncel yöntemlerle tedavi edilmektedir. Bu yazı, siliopatiye bağlı oluşan retina hastalıklarının oluşumunu, kliniğini, tanı ve tedavilerini anlatmaktadır
Anahtar Kelime:

Retinal Diseases with Ciliopathies

Öz:
Ciliopathies are a group of diseases that affects cells containing the cilia organel. Retinal involvement is frequent in ciliopathies. The outer segment of retinal photoreceptors is composed of cilium. Functional defects limited to the photoreceptors cilia in particular are classified as non-syndromic ciliopathies like Leber congenital amarousis and retinitis pigmentosa. Photoreceptor disease also manifests as a part of syndromic ciliopathies with involvement of multiple tissues as in Usher syndrome, Joubert syndrome, Meckel-Gruber syndrome, Senior-Loken syndrome, Sjögren-Larsson syndrome, Bardet-Biedl syndrome and Alstrom syndrome. Underlying mechanisms of pathology remain largely unclear in these diseases. Symptoms are treated using current methods. This paper describes the pathogenesis, clinics, diagnosis and treatment of retinal diseases occuring due to ciliopathy.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Bibliyografik
  • 1. Benmerah A, Durand B, Giles RH, Harris T, Kohl L, Laclef C et al. The more we know, the more we have to discover: An exciting future for understanding cilia and ciliopathies. Cilia. 2015;4: 5.
  • 2. Schueler M, Halbritter J, Phelps IG, Braun DA, Otto EA, Porath JD et al. Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies, J Med Genet. 2016;53(3):208-214.
  • 3. Shaheen R, Szymanska K, Basu B, Patel N, Ewida N, Faqeih E et al. Characterizing the morbid genome of ciliopathies. Genome Biol. 2016;17(1):242.
  • 4. Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533-547.
  • 5. Besharse JC, Baker SA, Luby-Phelps K, Pazour GJ. Photoreceptor intersegmental transport and retinal degeneration: A conserved pathway common to motile and sensory cilia. Adv Exp Med Biol. 2003;533:157- 164.
  • 6. Rachel RA, Li T, Swaroop A. Photoreceptor sensory cilia and ciliopathies: Focus on CEP290, RPGR and their interacting proteins. Cilia. 2012;1(1):22.
  • 7. Bujakowska KM, Liu Q, Pierce EA. Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb Perspect Biol. 2017; 9(10): a028274.
  • 8. May-Simera H, Nagel-Wolfrum K, Wolfrum U. Cilia - The sensory antennae in the eye. Prog Retin Eye Res. 2017;60: 144-180.
  • 9. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait. Nat Rev Genet. 2010; 11(4): 273-284.
  • 10. Khanna H, Baehr W. Retina ciliopathies: From genes to mechanisms and treatment. Vis Res.2012; 75: 1.
  • 11. Hunter DG, Fishman GA, Kretzer FL. Abnormal axonemes in X-linked retinitis pigmentosa. Arch Ophthalmol. 1988;106(3):362-368.
  • 12. Hunter DG, Fishman GA, Mehta RS, Kretzer FL. Abnormal sperm and photoreceptor axonemes in Usher’s syndrome. Arch Ophthalmol.1986;104(3):385-389.
  • 13. https://www.cipp-meeting.org/CIPPX/proceedings2010/others/cdmaterial/2KS3AndrewBush.pdf
  • 14. Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: Roles of cilia in development and disease. Hum Mol Genet. 2003; 12(1): R27-35.
  • 15. Quinlan RJ, Tobin JL, Beales PL. Modeling ciliopathies: Primary cilia in development and disease. Curr Topics Dev Biol. 2008; 84: 249-310.
  • 16. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011; 364 (16): 1533-1543.
  • 17. Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018; 39(1):152-166.
  • 18. Sorokin S. Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 1962; 15(2): 363-377.
  • 19. Singla V, Reiter JF. The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science. 2006; 313 (5787): 629-633.
  • 20. Eggenschwiler JT, Anderson KV. Cilia and developmental signaling. Annu Rev Cell Dev Biol. 2007;23: 345-373.
  • 21. Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol. 2002; 3 (11):813-825.
  • 22. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peranen J, Merdes A et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell. 2007;129 (6):1201-1213.
  • 23. Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell 2014; 31(3):279-290.
  • 24. Lechtreck KF, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol. 2009;187(7):1117- 1132.
  • 25. Nager AR, Goldstein JS, Herranz-Perez V, Portran D, Ye F, Garcia-Verdugo JM et al. An actin network dispatches ciliary gpcrs into extracellular vesicles to modulate signaling. Cell. 2017; 168(1–2): 252-263 e14.
  • 26. Salinas RY, Pearring JN, Ding JD; Spencer WJ, Hao Y, Arshavsky VY. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J Cell Biol. 2017; 216(5):1489-1499.
  • 27. Wheway G, Schmidts M, Mans DA, Szymanska K, Nguyen TT, Racher H et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol. 2015;17 (8):1074-1087.
  • 28. Reiter JF. A cilium is not a cilium: signaling contributes to ciliary morphological diversity. Dev Cell. 2008;14 (5):635-636.
  • 29. Besharse JC, Baker SA, Luby-Phelps K, Pazour GJ. Photoreceptor intersegmental transport and retinal degeneration: a conserved pathway common to motile and sensory cilia. Adv Exp Med Biol. 2003;533:157-164.
  • 30. Anand M, Khanna H. Ciliary transition zone (TZ) proteins RPGR and CEP290: role in photoreceptor cilia and degenerative diseases. Expert Opin Ther Targets. 2012;16 (6): 541-551.
  • 31. Dona M, Bachmann-Gagescu R, Texier Y, Toedt G, Hetterschijt L, Tonnaer EL et al. NINL and DZANK1 Co-function in vesicle transport and are essential for photoreceptor development in zebrafish. PLoS Genet. 2015;11 (10): e1005574.
  • 32. Fogerty J, Denton K, Perkins BD. Mutations in the dynein1 complex are permissible for basal body migration in photoreceptors but alter rab6 localization. Adv Exp Med Biol. 2016;854:209-215.
  • 33. Barbelanne M, Hossain D, Chan DP, Peranen J, Tsang WY. Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum Mol Genet. 2015; 24 (8): 2185-2200.
  • 34. Barbelanne M, Song J, Ahmadzai M, Tsang WY. Pathogenic NPHP5 mutations impair protein interaction with Cep290, a prerequisite for ciliogenesis. Hum Mol Genet. 2013; 22(12): 2482-2494.
  • 35. Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I, den Hollander AI et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet. 2009;41 (6): 739-745.
  • 36. Murga-Zamalloa C, Swaroop A, Khanna H. Multiprotein complexes of retinitis pigmentosa gtpase regulator (rpgr), a ciliary protein mutated in x-linked retinitis pigmentosa (xlrp). Adv Exp Med Biol. 2010; 664: 105- 114.
  • 37. Murga-Zamalloa CA, Desai NJ, Hildebrandt F, Khanna H. Interaction of ciliary disease protein retinitis pigmentosa GTPase regulator with nephronophthisis-associated proteins in mammalian retinas. Mol Vis. 2010; 16: 1373-1381.
  • 38. Omori Y, Chaya T, Katoh K, Kajimura N, Sato S, Muraoka K et al. Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc Natl Acad Sci USA. 2010; 107 (52): 22671-22676.
  • 39. Craige B, Tsao CC, Diener DR, Hou Y, Lechtreck KF, Rosenbaum JL et al. CEP290 tethers flagellar transition zone microtubules to the membrane and regulates flagellar protein content. J Cell Biol. 2010;190(5): 927-940.
  • 40. Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet. 2006; 15(11): 1847-1857.
  • 41. Cideciyan AV, Rachel RA, Aleman TS, Swider M, Schwartz SB, Sumaroka A et al. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: Generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy, Hum Mol Genet. 2011; 20(7):1411-1423.
  • 42. Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis, J Cell Biol. 2011; 192(6): 1023-1041.
  • 43. Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet. 2011; 43(8): 776-784.
  • 44. Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature. 1995; 374(6517): 62–64.
  • 45. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995; 374(6517): 60–61.
  • 46. Garanto A, van Beersum SE, Peters TA, Roepman R, Cremers FP, Collin RW. Unexpected CEP290 mRNA splicing in a humanized knock-in mouse model for Leber congenital amaurosis. PLoS One. 2013; 8(11): e79369.
  • 47. Drivas TG, Wojno AP, Tucker BA, Stone EM, Bennett J. Basal exon skipping and genetic pleiotropy: A predictive model of disease pathogenesis. Sci Transl Med. 2015; 7(291): 291ra97.
  • 48. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-676.
  • 49. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008; 26(2): 215–224.
  • 50. Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H et al. Generation of retinal cells from mouse and human induced pluripotent stem cells, Neuroscience letters. 2009; 458(3): 126-131.
  • 51. Lamba DA, Karl MO, Reh T.A. Strategies for retinal repair: Cell replacement and regeneration. Prog Brain Res. 2009; 175: 23-31.
  • 52. Gamm DM, Meyer JS. Directed differentiation of human induced pluripotent stem cells: A retina perspective. Regen Med. 2010; 5(3): 315–317.
  • 53. Phillips MJ, Wallace KA, Dickerson SJ, Miller MJ, Verhoeven AD, Martin JM et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci. 2012, 53(4): 2007–2019.
  • 54. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011; 364(16): 1533–1543.
  • 55. Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018; 66:157-186.
  • 56. Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet. 2001; 68(5): 1295–1298.
  • 57. Rachel RA, Yamamoto EA, Dewanjee MK, May-Simera HL, Sergeev YV, Hackett AN et al. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet. 2015; 24(13): 3775–3791.
  • 58. Coppieters F, Lefever S, Leroy BP, De Baere E. CEP290, a gene with many faces: Mutation overview and presentation of CEP290base. Hum Mut. 2010; 31(10): 1097–1108.
  • 59. Drivas TG, Bennett J. CEP290 and the primary cilium. Adv Exp Med Biol. 2014; 801: 519–525.
  • 60. Mathur P, Yang J. Usher syndrome: hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta. 2015; 1852(3): 406–420.
  • 61. Van Aarem A, Wagenaar M, Pinckers AJ, Huygen PL, Bleeker-Wagemakers EM, Kimberling BJ et al. Ophthalmologic findings in Usher syndrome type 2A. Ophthalmic Genet. 1995;16(4):151–158.
  • 62. Sayer J, Otto EA, O’Toole JF, Nurnberg G, Kennedy MA, Becker C et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet. 2006; 38: 674-681.
  • 63. Fleigauf M, Horvath J, Von Schnakenburg C. Nephrocystin Specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006; 17(9): 2424-2433.
  • 64. Valente EM, Marsh SE, Castori M, Dixon-Salazar T, Bertini E, Al-Gazali L et al. Distinguishing the four genetic causes of Joubert syndrome-related disorders. Ann Neurol. 2005; 57(4): 513-519.
  • 65. Saraiva JM, Baraitser M. Joubert syndrome: A review. Am J Med Genet. 1992; 43(4): 726–731.
  • 66. Alexiev B, Lin X, Sun C. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and different diagnosis. Arch Pathol Lab Med. 2006;130(8):1236-1238.
  • 67. MacRae D, Howard R, Albert D. Ocular manifestations of the Meckel syndrome. Arch Ophthal. 1972; 88(1): 107-113.
  • 68. Dawe H, Smith UM, Cullinane AR, Gerrelli D, Cox P, Badano JL et al. The Meckel-Gruber Syndrome proteins MKS1 and mecklin interact and are required for primary cilium formation. Hum Mol Genet. 2007; 16(2): 173-186.
  • 69. Baala L, Ramano S, Khaddour R. The Meckle-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am J Hum Genet. 2007; 80(1): 186–194.
  • 70. Loken AC, Hanssen O, Halvorsen S, Jolster NJ. Hereditary renal dysplasia and blindness. Acta Paediat. 1961; 50: 177-184.
  • 71. Senior B, Friedmann AI, Braudo JL. Juvenile familial nephropathy with tapetoretinal degeneration: A new oculorenal dystrophy. Am J Ophthal. 1961; 52: 625-633.
  • 72. Ticho B, Sieving PA. Leber’s congenital amaurosis with marbleized fundus and juvenile nephronophthisis. Am J Ophthalmol.1989;107(4):426-428.
  • 73. Fleigauf M, Horvath J, Von Schnakenburg C. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J Am Soc Nephrol. 2006; 17(9): 2424–2433.
  • 74. Fouzdar-Jain S, Suh DW, Rizzo WB. Sjögren-Larsson syndrome: a complex metabolic disease with a distinctive ocular phenotype. Ophthalmic Genet. 2019; 40(4): 298-308.
  • 75. Forsythe E, Kenny J, Bacchelli C, Beales PL. Managing Bardet-Biedl Syndrome-Now and in the Future. Front Pediatr. 2018; 13:6:23.
  • 76. Campo RV, Aaberg TM. Ocular and systemic manifestations of the Bardet-Biedl syndrome. Am J Ophthalmol. 1982; 94(6): 750-756.
  • 77. Heon E, Westall C, Carmi R. Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet. 2005; 132A(3): 283-287.
  • 78. Iannaccone A, De Propris G, Roncati S, Rispoli E, Del Porto G, Pannarale MR. The ocular phenotype of the Bardet-Biedl syndrome. Comparison to nonsyndromic retinitis pigmentosa. Ophthalmic Genet. 1997; 18(1): 13-26.
  • 79. Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat Genet. 2002; 31(1): 74–78.
  • 80. Marshall JD, Bronson RT, Collin GB, Nordstrom AD, Maffei P, Paisey RB et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med. 2005; 165(6): 675-683.
  • 81. Collin GB, Cyr E, Bronson R. Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet. 2005;14(16): 2323-2333.
  • 82. Nasser F, Weisschuh N, Maffei P, Milan G, Heller C, Zrenner E et al. Ophthalmic features of cone-rod dystrophy caused by pathogenic variants in the ALMS1 gene. Acta Ophthalmol. 2018; 96(4): e445–e54.
  • 83. Malm E, Ponjavic V, Nishina PM, Naggert JK, Hinman EG, Andreasson S et al. Full-field electroretinography and marked variability in clinical phenotype of Alstrom syndrome. Arch Ophthalmol. 2008; 126(1): 51-57.
  • 84. Li G, Vega R, Nelms K. A role for Alstrom Syndrome protein, Alms1, in kidney ciligenesis and cellular quiescence. PLoS Genetics. 2007;3(1): 9–20.
  • 85. Russell-Eggitt I, Clayton P, Coffey R. Alstrom syndrome. Ophthamology. 1998;105(7):1274-1280.
  • 86. Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG, Ash JD et al and the Foundation Fighting Blindness Scientific Advisory Board. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl Vis Sci Technol. 2018; 18;7(4):6.
  • 87. Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J et al. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci. 2014; 6;55(7): 4244-51.
  • 88. Garanto A, Chung DC, Duijkers L, Corral-Serrano JC, Messchaert M, Xiao R et al. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet. 2016; 15;25(12):2552-2563.
  • 89. Burnight ER, Wiley LA, Drack AV, Braun TA, Anfinson KR, Kaalberg EE et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther. 2014;21(7):662-72.
  • 90. Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration. Prog Retin Eye Res. 2003; 22(5): 607–655.
  • 91. Mazzoni F, Novelli E, Strettoi E. Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci. 2008; 28(52):14282-14292.
  • 92. Akimoto M, Cheng H, Zhu D, Brzezinski JA, Khanna R, Filippova E et al. Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci USA. 2006; 103(10): 3890-3895.
  • 93. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 200; 444(7116): 203-207.
  • 94. Chen HY, Welby E, Li T, Swaroop A. Retinal diseases in ciliopathies: Recent advances with a focus on stem cell-based therapies. Transl Sci Rare Dis. 2019; 4(1-2): 97-115.
  • 95. Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol. 2016; 17(3): 170-182.
  • 96. Kaewkhaw R, Swaroop M, Homma K, Nakamura J, Brooks M, Kaya KD et al. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines. Invest Ophthalmol Vis Sci. 2016; 57(5):1-11.
  • 97. Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol. 2018; 433(2): 132–143.
  • 98. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat Rev Drug Discov. 2017; 16(8): 531–543.
  • 99. Soldner F, Jaenisch R. Stem cells, genome editing and the path to translational medicine. Cell. 2018; 175(3): 615–632.
  • 100. Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J, Otto EA et al. High- throughput screening enhances kidneyorganoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell. 2018; 22(6): 929-940 e4.
  • 101. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Brockhurst RJ, Hayes KC et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol. 2010;128(4):403-411.
  • 102. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol. 2004;122(9):1306-1314.
  • 103. Bok D. The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl. 1993; 17: 189-195.
  • 104. Massof RW, Finkelstein D. Supplemental vitamin A retards loss of ERG amplitude in retinitis pigmentosa. Arch Ophthalmol. 1993;111(6):751- 754.
  • 105. Clemson CM, Tzekov R, Krebs M, Checchi JM, Bigelow C, Kaushal S. Therapeutic potential of valproic acid for retinitis pigmentosa. Br J Ophthalmol. 2011;95(1):89–93.
  • 106. Lee SY, Usui S, Zafar AB, Oveson BC, Jo YJ, Lu L et al. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. J Cell Physiol. 2011;226(7):1843-1849.
  • 107. Schimel AM, Abraham L, Cox D, Sene A, Kraus C, Dace DS et al. N-acetylcysteine amide (NACA) prevents retinal degeneration by up-regulating reduced glutathione production and reversing lipid peroxidation. Am J Pathol. 2011;178(5):2032-2043.
  • 108. Birch DG, Bennett LD, Duncan JL, Weleber RG, Pennesi ME. Long-term follow-up of patients with retinitis pigmentosa (RP) receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol. 2016; 170:10-14.
  • 109. Dagnelie G, Christopher P, Arditi A, da Cruz L, Duncan JL, Ho AC et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus(R) II retinal prosthesis system. Clin Exp Ophthalmol. 2017;45(2): 152-159.
  • 110. da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale PO et al. Five year safety and performance results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology. 2016;123(10):2248-2254.
  • 111. Geruschat DR, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD et al. An analysis of observer-rated functional vision in patients implanted with the Argus II Retinal Prosthesis System at three years. Clin Exp Optom. 2016; 99(3): 227-232.
  • 112. Ho AC, Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Handa J et al. Long term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015; 122(8): 1547-1554.
  • 113. Edwards TL, Cottriall CL, Xue K, Simunovic MP, Ramsden JD, Zrenner E et al. Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa. Ophthalmology. 2018;125(3):432–443.
  • 114. Liu Y, Hu H, Liang M, Xiong Y, Li K, Chen M et al. Regulated differentiation of WERI-Rb-1 cells into retinal neuron-like cells. Int J Mol Med. 2017; 40(4): 1172-1184.
  • 115. Barrett JM, Berlinguer-Palmini R, Degenaar P. Optogenetic approaches to retinal prosthesis. Vis Neurosci. 2014; 31(4-5): 345-354.
APA Örnek K, Örnek N (2021). Siliopatiler ile Birlikte Olan Retina Hastalıkları. , 271 - 278.
Chicago Örnek Kemal,Örnek Nurgül Siliopatiler ile Birlikte Olan Retina Hastalıkları. (2021): 271 - 278.
MLA Örnek Kemal,Örnek Nurgül Siliopatiler ile Birlikte Olan Retina Hastalıkları. , 2021, ss.271 - 278.
AMA Örnek K,Örnek N Siliopatiler ile Birlikte Olan Retina Hastalıkları. . 2021; 271 - 278.
Vancouver Örnek K,Örnek N Siliopatiler ile Birlikte Olan Retina Hastalıkları. . 2021; 271 - 278.
IEEE Örnek K,Örnek N "Siliopatiler ile Birlikte Olan Retina Hastalıkları." , ss.271 - 278, 2021.
ISNAD Örnek, Kemal - Örnek, Nurgül. "Siliopatiler ile Birlikte Olan Retina Hastalıkları". (2021), 271-278.
APA Örnek K, Örnek N (2021). Siliopatiler ile Birlikte Olan Retina Hastalıkları. Güncel Retina Dergisi, 5(3), 271 - 278.
Chicago Örnek Kemal,Örnek Nurgül Siliopatiler ile Birlikte Olan Retina Hastalıkları. Güncel Retina Dergisi 5, no.3 (2021): 271 - 278.
MLA Örnek Kemal,Örnek Nurgül Siliopatiler ile Birlikte Olan Retina Hastalıkları. Güncel Retina Dergisi, vol.5, no.3, 2021, ss.271 - 278.
AMA Örnek K,Örnek N Siliopatiler ile Birlikte Olan Retina Hastalıkları. Güncel Retina Dergisi. 2021; 5(3): 271 - 278.
Vancouver Örnek K,Örnek N Siliopatiler ile Birlikte Olan Retina Hastalıkları. Güncel Retina Dergisi. 2021; 5(3): 271 - 278.
IEEE Örnek K,Örnek N "Siliopatiler ile Birlikte Olan Retina Hastalıkları." Güncel Retina Dergisi, 5, ss.271 - 278, 2021.
ISNAD Örnek, Kemal - Örnek, Nurgül. "Siliopatiler ile Birlikte Olan Retina Hastalıkları". Güncel Retina Dergisi 5/3 (2021), 271-278.