Yıl: 2022 Cilt: 26 Sayı: 2 Sayfa Aralığı: 243 - 254 Metin Dili: İngilizce DOI: 10.29228/jrp.122 İndeks Tarihi: 07-06-2022

The involvement of miRNAs in CYP450 gene expression: A brief review of the literature

Öz:
Drug biotransformation is a critical process in metabolic elimination of drugs. It occurs mainly in the liver as well as in other tissues such as kidney and small intestine and consists of three stages: Phase I, Phase II and Phase III. Drugs are converted to a more polar and hydrophilic metabolites during Phase I and Phase II, which are excreted by a variety of membrane transporters such as P-glycoprotein and Multidrug Resistance Protein 1 in Phase III. Cytochrome P450 enzyme isoforms achieve 80% of Phase I metabolism. It is well described that there is inter-individual drug response variability such as adverse drug reactions or reduced drug efficacy and that genetic variation within the sequence of biotransformation-related genes affects these different therapeutic outcomes observed between individuals. However, genetic factors cannot completely explain inter-individual differences. Recent studies have shown that epigenetic factors such as histone modification, DNA methylation and non-coding miRNAs heavily influence drug biotransformation through post-transcriptional regulation of metabolism gene expression. It is important to understand the causes of alterations in drug metabolism since varied biotransformation may lead to adverse drug effects or a loss of efficacy. Therefore, in this review, the effects of miRNAs in CYP450 gene expression will be discussed briefly in the light of recent studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Esteves F, Rueff J, Kranendonk M. The Central Role of Cytochrome P450 in Xenobiotic Metabolism-A Brief Review on a Fascinating Enzyme Family. J Xenobiot. 2021; 11(3): 94-114. [CrossRef]
  • [2] Currie GM. Pharmacology, Part 2: Introduction to Pharmacokinetics. J Nucl Med Technol 2018; 46(3): 221-230. [CrossRef]
  • [3] Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. MicroRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med. 2015; 9(11): 1153–1176. [CrossRef]
  • [4] Ander BP, Barger N, Stamova B, Sharp FR, Schumann CM. Atypical miRNA expression in temporal cortex associated with dysregulation of ımmune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism. 2015; 19: 6-37. [CrossRef]
  • [5] Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spektrum disorder. Front. Psychiatry. 2016; 7:176. [CrossRef]
  • [6] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843–854. [CrossRef]
  • [7] Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126-139. [CrossRef]
  • [8] Forero DA, Van der Ven K, Callaerts P, Del-Favero J. miRNA genes and the brain: implications for psychiatric disorders. Human Mutation. 2010; 31:1195-1204. [CrossRef]
  • [9] Peng L, Zhong X. Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin B. 2015; 5(2): 106-112. [CrossRef]
  • [10] Lu TX, Rothenberg ME. MikroRNA. J Allergy Clin Immunol. 2018; 141: 1202–1207. [CrossRef]
  • [11] Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004; 14: 1902-1910. [CrossRef]
  • [12] Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015; 87: 3-14. [CrossRef]
  • [13] Geaghan M, Cairns MJ. MicroRNA and post-transcriptional dysregulation in psychiatry. Biol Psychiatry. 2014; 78(4): 231-239. [CrossRef]
  • [14] Kichukova TM, Popov NT, Ivanov IS, Vachev TI. Profiling of circulating serum microRNAs in children with autism spectrum disorder using stem-loop qRT- PCR assay. Folia Medica. 2017; 59: 43-52. [CrossRef]
  • [15] Xue M, Zhuo Y, Shan B. MicroRNAs, long noncoding RNAs, and their functions in human disease. Methods Mol Biol. 2017; 1617: 1-25. [CrossRef]
  • [16] Yaroğlu HY, Görür A, Ayaz L, Fidancı Balcı Ş, Akbayır S, Ünal Doğruer ZN, Kaplan E, Serin MS, Buğdaycı R, Ateş Aras N, Gümüş Tamer L. MicroRNA expression profiling in healthy subjects in Mersin. Mersin Univ Saglık Bilim Derg. 2011; 4(3): 25-29. [CrossRef]
  • [17] He L. Post-transcriptional regulation of PTEN dosage by non-coding RNAs. Sci Signal. 2014; 3(146): pe39. [CrossRef]
  • [18] Ni WJ, Leng XM. Dynamic miRNA-mRNA paradigms: New faces of miRNAs. Biochem Biophys Rep. 2015; 4: 337- 341. [CrossRef]
  • [19] Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K. The microRNA spectrum in 12 body fluids. Clin Chem. 2010; 56(11): 1733-1741. [CrossRef]
  • [20] Kosaka N, Izumi H, Sekine K, Ochiya T. MicroRNA as a new immune-regulatory agent in breast milk. Silence. 2010; 1(1): 7. [CrossRef]
  • [21] Wu Y, Li Q, Zhang R, Dai X, Chen W, Xing D. Circulating microRNAs: Biomarkers of disease. Clin Chim Acta. 2021; 516: 46-54. [CrossRef]
  • [22] Hicks SD, Middleton FA. A comparative review of microRNA expression patterns in autism spektrum disorder. Front Psychiatry. 2016; 7:176. [CrossRef]
  • [23] Giridharan VV, Thandavarayan RA, Fries GR, Walss-Bass C, Barichello T, Justice NJ, Reddy MK, Quevedo J. Newer insights into the role of miRNA a tiny genetic tool in psychiatric disorders: Focus on post-traumatic stres disorder. Transl Psychiatry. 2016; 6(11):e954. [CrossRef]
  • [24] Vachev TI, Minkov IN, Stoyanova VK, Popov NT. Down regulation of miRNA let-7b-3p and let-7d-3p in the peripheral blood of children with autism spectrum disorder. Int J Curr Microbiol App Sci. 2013; 2(12): 384-388. [25] Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008; 110(1): 13-21. [CrossRef]
  • [26] Lee Y, Jeon K, Lee J-T, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal. 2002; 21(17): 4663-4670. [CrossRef]
  • [27] Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004; 432(7014): 231-235. [CrossRef]
  • [28] Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009; 136(2): 215-233. [CrossRef] [29] MacFarlane L, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 2010; 11(7): 537-561. [CrossRef]
  • [30] Li X, Tian Y, Tu MJ, Ho PY, Batra N, Yu AM. Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition. Acta Pharm Sin B. 2019; 9(3): 639-647. [CrossRef]
  • [31] Mora F, Molina JD, Zubillaga E, López-Muñoz F, Álamo C. CYP450 and Its Implications in the Clinical Use of Antipsychotic Drugs. Clin Exp Pharmacol. 2015; 5(3): 176. [CrossRef]
  • [32] Furge LL, Guengerich FP. Cytochrome P450 Enzymes in Drug Metabolism and Chemical Toxicology. Biochem Mol Biol Educ. 2006; 34(2): 66-74. [CrossRef]
  • [33] Dluzen DF, Lazarus P. MicroRNA regulation of the major drug-metabolizing enzymes and related transcription factors. Drug Metab Rev. 2015; 47(3):320-334. [CrossRef]
  • [34] Zamani AG, Yıldırım A. Evaluation of cytochrome P450 expression as a biomarker. J Med Invest. 2014; 12(1): 37-42. [CrossRef]
  • [35] Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One. 2013; 8(12):e82562. [CrossRef]
  • [36] Li D,Tolleson WH, Yu D,Chen S, Guo L,Xiao W, Tong W, Ning B. MicroRNA-Dependent Gene Regulation of the Human Cytochrome P450. In: Cacabelos R. (Ed.). Pharmacoepigenetics. Academic Press, Elsevier Inc., UK, 2019, pp. 129-138. [CrossRef]
  • [37] Singh D, Kashyap A, Pandey RV, Saini KS. Novel advances in cytochrome P450 research. Drug Discov Today. 2011; 16(17-18): 793-799. [CrossRef]
  • [38] Acar Ç, Yeşilot Ş. MicroRNAs in Cancer and Drug Response. Med J SDU. 2018; 25(4) :498-507. [CrossRef]
  • [39] Yu AM, Pan YZ. Noncoding microRNAs: small RNAs play a big role in regulation of ADME?. Acta Pharm Sin B. 2012; 2 (2): 93-101. [CrossRef]
  • [40] Fejzullahu A. The ımpact of genetic factors (CYP2D6) on drug metabolism. Aydın Sağlık Derg. 2018; 4(1): 1-20.
  • [41] Mroziewicz M, Tyndale RF. Pharmacogenetics: A tool for identifying genetic factors in drug dependence and response to treatment. Addict Sci Clin Pract. 2010; 5(2): 17-29.
  • [42] Habano W, Kawamura K, Iizuka N, Terashima J, Sugai T, Ozawa S. Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. Clin Epigenetics. 2015; 7: 105. [CrossRef]
  • [43] Yang H, Nie Y, Li Y, Wan YJY. Histone modification-mediated CYP2E1 gene expression and apoptosis of HepG2 cells. Exp Biol Med (Maywood). 2010; 235(1): 32-39. [CrossRef]
  • [44] Li MP, Hu YD, Hu XL, Zhang YJ, Yang YL, Jiang C, Tang J, Chen XP. MiRNAs and miRNA polymorphisms modify drug response. Int J Environ Res Public Health. 2016; 13(11): 1096. [CrossRef]
  • [45] miRBase 21. https://www.mirbase.org/ftp.shtml, (accessed on November 21, 2020).
  • [46] Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical ımplication. Curr Drug Metab. 2015; 16(2): 86-96. [CrossRef]
  • [47] Nakajima M, Yokoi T. MicroRNAs from biology to future pharmacotherapy: regulation of cytochrome P450s and nuclear receptors. Pharmacol Ther. 2011; 131(3): 330-337. [CrossRef]
  • [48] Ikemura K, Iwamoto T, Okuda M. MicroRNAs as regulators of drug transporters, drug-metabolizing enzymes, and tight junctions: Implication for intestinal barrier function. Pharmacol and Ther. 2014; 142 (2): 217-224. [CrossRef]
  • [49] Zhang H, Zhu L, Yang X, Gao N, Fang Y, Wen Q, Qiao H. Variation in the expression of cytochrome P450-related miRNAs and transcriptional factors in human livers: Correlation with cytochrome P450 gene phenotypes. Toxicol Appl Pharmacol. 2021; 412: 115389. [CrossRef]
  • [50] Kugler N, Klein K, Zanger UM. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochem Pharmacol. 2020; 171: 113725. [CrossRef]
  • [51] Gill P, Bhattacharyya S, McCullough S, Letzig L, Mishra PJ, Luo C, Dweep H, James L. MicroRNA regulation of CYP1A2, CYP3A4 and CYP2E1 expression in acetaminophen toxicity. Sci Rep. 2017; 7(1): 12331. [CrossRef]
  • [52] Wei Z, Jiang S, Zhang Y, Wang X, Peng X, Meng C, Liu Y, Wang H, Guo L, Qin S, He L, Shao F, Zhang L, Xing Q. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model. Sci Rep. 2014; 4:4283. [CrossRef]
  • [53] Chen J, Zhao KN, Chen C . The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann Transl Med. 2014; 2(1): 7. [CrossRef]
  • [54] Pan Y. Gao W, Yu A. MicroRNAs regulate CYP3A4 expression via direct and ındirect targeting. Drug Metab Dispos. 2009; 37(10) :2112–2117. [CrossRef]
  • [55] Ekström L, Skilving I, Ovesjo ML, Aklillu E, Nyle´n H, Rane A, Diczfalusy U, Björkhem-Bergman L. MiRNA-27b levels are associated with CYP3A activity in vitro and in vivo. Pharma Res Per. 2015; 3(6):e00192. [CrossRef]
  • [56] Huang Z, Wang M, Liu L, Peng J, Guo C, Chen X, Huang L, Tan J, Yang G. Transcriptional repression of CYP3A4 by increased miR-200a-3p and miR-150-5p promotes steatosis in vitro. Front Genet. 2019; 10: 484. [CrossRef]
  • [57] Vuppalanchi R, Liang T, Goswami CP, Nalamasu R, Li L, Jones D, Wei R, Liu W, Sarasani V, Janga SC, Chalasani N. Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis. PLoS ONE. 2013; 8 (9): e74471. [CrossRef]
  • [58] Takagi S, Nakajima M, Mohri T, Yokoi T. Post-transcriptional regulation of human pregnane X receptor by micro- RNA affects the expression of cytochrome P450 3A4. J Biol Chem. 2008; 283(15): 9674-80. [CrossRef]
  • [59] Vachirayonstien T, Yan B. MicroRNA-30c-1-3p is a silencer of the pregnane X receptor by targeting the 30 - untranslated region and alters the expression of its target gene cytochrome P450 3A4. Biochim Biophys Acta. 2016;1859(9):1238–1244. [CrossRef]
  • [60] Oda Y, Nakajima M, Tsuneyama K, Takamiya M, Aoki Y, Fukami T, Yokoi T. Retinoid X receptor alpha in human liver is regulated by miR-34a. Biochem Pharmacol. 2014;90 (2):179–187. [CrossRef]
  • [61] Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T. Human CYP2E1 is regulated by miR-378. Biochem Pharmacol. 2010; 79 (7): 1045-1052. [CrossRef]
  • [62] Nakano M, Mohri T, Fukami T, Takamiya M, Aoki Y, McLeod HL, Nakajima M. Single-nucleotide polymorphisms in cytochrome P450 2E1 (CY2E1) 3’-untranslated region affect the regulation of CYP2E1 by miR-570. Drug Metab Dispos. 2015; 43 (10): 1450-1457. [CrossRef]
  • [63] Matthews O, Morrison EE, Tranter JD, Lewis PS, Toor IS, Srivastava A, Sargeant R, Rollison H, Matchett KP, Kendall TJ, Gray GA, Goldring C, Park K, Denby L, Dhaun N, Bailey MA, Henderson NC, Williams D, Dear JW. Transfer of hepatocellular microRNA regulates cytochrome P450 2E1 in renal tubular cells. EBioMedicine 2020; 62: 103092. [CrossRef]
  • [64] Rieger JK, Klein K, Winter S, Zanger UM. Expression variability of absorption, distribution, metabolism, excretionrelated microRNAs in human liver: influence of nongenetic factor and association with gene expression. Drug Metab Dis. 2013; 41(10): 1752-1762. [CrossRef]
  • [65] Petrović J, Pešić V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020; 28: 88–94. [CrossRef]
  • [66] Zhang SY, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA. Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol Pharmacol. 2012; 82(3) :529–540. [CrossRef]
  • [67] Yu D, Green B, Tolleson WH, Jin Y, Mei N, Guo Y, Deng H, Pogribny I, Ning B. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem Pharmacol. 2015; 98(1): 215-223. [CrossRef]
  • [68] Zeng L, Chen Y, Wang Y, Yu LR, Knox B, Chen J, Shi T, Chen S, Ren Z, Guo L, Wu Y, Liu D, Huang K, Tong W, Yu D, Ning B. MicroRNA hsa-miR-370-3p suppresses the expression and induction of CYP2D6 by facilitating mRNA degradation. Biochem Pharmacol. 2017; 140: 139–149. [CrossRef]
  • [69] Guo J, Xiang Q, Xin Y. Huang Y, Zou G, Liu T. miR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis. Cell Commun Signal 2020; 18: 35. [CrossRef]
  • [70] Jin Y, Yu D, Tolleson WH, Knox B, Wang Y, Chen S, Ren Z, Deng H, Guo Y, Ning B. MicroRNA hsa-miR-25-3p suppresses the expression and drug induction of CYP2B6 in human hepatocytes. Biochem Pharmacol. 2016; 113: 88– 96. [CrossRef]
  • [71] Tamási V and Falus A. Genetic and Epigenetic Factors Affecting Cytochrome P450 Phenotype and Their Clinical Relevance. In: Paxton J. (Eds). Topics on Drug Metabolism. Intech Open, 2012.
  • [72] Choi YM, An S, Lee EM, Kim K, Choi SJ, Kim JS, Jang HH, An I, Bae S. CYP1A1 is a target of miR-892a-mediated post-transcriptional repression. Int J Oncol. 2012; 41: 331-336. [CrossRef]
  • [73] Wang L, Oberg AL, Asmann YW, Sicotte H, McDonnell SK, Riska SM, Liu W, Steer CJ, Subramanian S, Cunningham JM, Cerhan JR, Thibodeau SN. Genome-wide transcriptional profiling reveals microRNA-correlated genes and biological processes in human lymphoblastoid cell lines. PLoS One 2009; 4(6): e5878. [CrossRef]
  • [74] Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027): 769- 773. [CrossRef]
  • [75] Lamba V, Ghodke Y, Guan W, Tracy TS. MicroRNA-34a is associated with expression of key hepatic transcription factors and cytochrome P450s. Biochem Biophys Res Commun. 2014; 445(2): 404–411. [CrossRef]
  • [76] Yu D, Green B, Marrone A, Guo Y, Kadlubar S, Lin D, Fuscoe J, Pogribny I, Ning B. Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci Rep. 2015; 5:8534. [CrossRef]
  • [77] Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006; 66: (18). [CrossRef]
  • [78] Wang Y, Yu D, Tolleson WH, Yu L, Green B, Zeng L, Chen Y, Chen S, Ren Z, Guo L, Tong W, Guan H, Ning B. A systematic evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem Pharmacol. 2017; 138: 174–184. [CrossRef]
APA TEZCAN T, ÖZKAN-KOTİLOĞLU S, KAYA-AKYÜZLÜ D (2022). The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. , 243 - 254. 10.29228/jrp.122
Chicago TEZCAN Tuğba,ÖZKAN-KOTİLOĞLU Selin,KAYA-AKYÜZLÜ Dilek The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. (2022): 243 - 254. 10.29228/jrp.122
MLA TEZCAN Tuğba,ÖZKAN-KOTİLOĞLU Selin,KAYA-AKYÜZLÜ Dilek The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. , 2022, ss.243 - 254. 10.29228/jrp.122
AMA TEZCAN T,ÖZKAN-KOTİLOĞLU S,KAYA-AKYÜZLÜ D The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. . 2022; 243 - 254. 10.29228/jrp.122
Vancouver TEZCAN T,ÖZKAN-KOTİLOĞLU S,KAYA-AKYÜZLÜ D The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. . 2022; 243 - 254. 10.29228/jrp.122
IEEE TEZCAN T,ÖZKAN-KOTİLOĞLU S,KAYA-AKYÜZLÜ D "The involvement of miRNAs in CYP450 gene expression: A brief review of the literature." , ss.243 - 254, 2022. 10.29228/jrp.122
ISNAD TEZCAN, Tuğba vd. "The involvement of miRNAs in CYP450 gene expression: A brief review of the literature". (2022), 243-254. https://doi.org/10.29228/jrp.122
APA TEZCAN T, ÖZKAN-KOTİLOĞLU S, KAYA-AKYÜZLÜ D (2022). The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. Journal of research in pharmacy (online), 26(2), 243 - 254. 10.29228/jrp.122
Chicago TEZCAN Tuğba,ÖZKAN-KOTİLOĞLU Selin,KAYA-AKYÜZLÜ Dilek The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. Journal of research in pharmacy (online) 26, no.2 (2022): 243 - 254. 10.29228/jrp.122
MLA TEZCAN Tuğba,ÖZKAN-KOTİLOĞLU Selin,KAYA-AKYÜZLÜ Dilek The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. Journal of research in pharmacy (online), vol.26, no.2, 2022, ss.243 - 254. 10.29228/jrp.122
AMA TEZCAN T,ÖZKAN-KOTİLOĞLU S,KAYA-AKYÜZLÜ D The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. Journal of research in pharmacy (online). 2022; 26(2): 243 - 254. 10.29228/jrp.122
Vancouver TEZCAN T,ÖZKAN-KOTİLOĞLU S,KAYA-AKYÜZLÜ D The involvement of miRNAs in CYP450 gene expression: A brief review of the literature. Journal of research in pharmacy (online). 2022; 26(2): 243 - 254. 10.29228/jrp.122
IEEE TEZCAN T,ÖZKAN-KOTİLOĞLU S,KAYA-AKYÜZLÜ D "The involvement of miRNAs in CYP450 gene expression: A brief review of the literature." Journal of research in pharmacy (online), 26, ss.243 - 254, 2022. 10.29228/jrp.122
ISNAD TEZCAN, Tuğba vd. "The involvement of miRNAs in CYP450 gene expression: A brief review of the literature". Journal of research in pharmacy (online) 26/2 (2022), 243-254. https://doi.org/10.29228/jrp.122