Yıl: 2022 Cilt: 72 Sayı: 1 Sayfa Aralığı: 81 - 87 Metin Dili: İngilizce DOI: 10.5152/forestist.2021.20050 İndeks Tarihi: 18-06-2022

Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests

Öz:
Climate change can affect tree growth, stand productivity, and tree mortality. The sensitivity of tree species to the changing climate may vary in managed and unmanaged forests. Thus, the main objective of this study was to examine whether the effects of climate vary in managed and unmanaged Kazdağı fir (Abies nordmanniana subsp. equi-trojani) forests in northern Turkey. Individual tree-ring chronologies from the managed and unmanaged forests of the species were used. Results indicated significant effects of climate (i.e., the standardized precipitation-evapotranspiration index (SPEI)), and forest type (i.e., managed and unmanaged) on radial growth of Kazdağı fir trees (p < .05). Trees in the unmanaged forest exhibited a lower radial growth rate and a higher sensitivity to climatic conditions compared to the managed forest. This can be associated with the reduced tree density following silvicultural treatments, which result in increased resource availability to the remaining trees in the managed forest. Initial findings would create a basis for future decisions that aim to enhance the resistance of Kazdağı fir forests against the future climate extremes of the region. Long-term monitoring is needed to observe the effects of forest type on the response of Kazdağı fir trees to the climate over time.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • • Beguería, S., Sergio, M., & Yes, L. (2013). Calculation of the standardized precipitation-evapotranspiration index. Retrieved from https://cran.r-proje ct.org/web/packages/SPEI/SPEI.pdf
  • • Bhuyan, U., Zang, C., & Menzel, A. (2017). Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia, 44, 1–8. [CrossRef]
  • • Bolat, İ., Kara, Ö., & Tok, E. (2017). Change of temperature and precipitation in Kastamonu, Karabük and Bolu Between 1980–1999 and 2000–2015 years. Journal of Bartin Faculty of Forestry, 19(1), 276–289.
  • • Bosela, M., Štefančík, I., Petráš, R., & Vacek, S. (2016). The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agricultural and Forest Meteorology, 222, 21–31. [CrossRef]
  • • Clark, J. S., Iverson, L., Woodall, C. W., Allen, C. D., Bell, D. M., Bragg, D. C., D’Amato, A. W., Davis, F. W., Hersh, M. H., Ibanez, I., Jackson, S. T., Matthews, S., Pederson, N., Peters, M., Schwartz, M. W., Waring, K. M., Zimmermann, N. E., Davis, F. W.,... Hersh, M. H (2016). The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 22(7), 2329–2352. [CrossRef]
  • • D'Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23(8), 1735–1742. [CrossRef]
  • • Elkin, C., Giuggiola, A., Rigling, A., & Bugmann, H. (2015). Short‐and long‐ term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecological Applications, 25(4), 1083–1098. [CrossRef]
  • • Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., OsinagaAcosta, O., Malizia, L., Silman, M., Farfán-Ríos, W., Malhi, Y., Young, K. R., Cuesta C, F., Homeier, J., Peralvo, M., Pinto, E., Jadan, O., Aguirre, N....Aguirre, Z (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735), 207–212. [CrossRef]
  • • Frelich, L. E., Montgomery, R. A., & Oleksyn, J. (2015). Northern temperate forests. K. S. H. Peh, R. T. Corlett & Y. Bergeron (Eds.), (p. 16). London, UK: Routledge.
  • • Granata, M. U., Gratani, L., Bracco, F., & Catoni, R. (2019). Carbon dioxide sequestration capability of an unmanaged old-growth broadleaf deciduous forest in a Strict Nature Reserve. Journal of Sustainable Forestry, 38(1), 85–96. [CrossRef]
  • • Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis (p. 369). San Diego: Academic Press.
  • • Hepbilgin, B., & Koç, T. (2019). Bölgesel sıcaklık ve yağış verilerine göre Kazdağı ve yakın çevresinin ikliminde öngörülen değişiklikler (2000–2099). Marmara Coğrafya Dergisi, 37, 253–270.
  • • IPCC (2007). 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In S. Solomon, et al. (Eds.), Climate change. Cambridge and New York: Cambridge University Press.
  • • Jones, S. M., Bottero, A., Kastendick, D. N., & Palik, B. J. (2019). Managing red pine stand structure to mitigate drought impacts. Dendrochronologia, 57. [CrossRef]
  • • Kara, F., & Lhotka, J. M. (2020a). Climate and silvicultural implications in modifying stand composition in mixed fir-pine stands. Journal of Sustainable Forestry, 39(5), 511–525. [CrossRef]
  • • Kara, F., & Lhotka, J. M. (2020b). Comparison of unmanaged and managed Trojan Fir-Scots pine forests for structural complexity. Turkish Journal of Agriculture and Forestry, 44(1), 62–70. [CrossRef]
  • • Koricheva, J., Gurevitch, J., & Mengersen, K. (2013). Handbook of meta-analysis in ecology and evolution. Princeton: Princeton University Press. • Köse, N. (2012). Climatic factors affecting tree-ring growth of Abies nordmanniana (Stev.) Spach. Subsp. bornmuelleriana (Mattf.) Coode & Cullen from Kastamonu, Turkey. İstanbul Üniversitesi Orman Fakültesi Dergisi, 62(1), 71–83.
  • • Kunz, J., Löffler, G., & Bauhus, J. (2018). Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 414, 15–27 [CrossRef]
  • • Lechuga, V., Carraro, V., Viñegla, B., Carreira, J. A., & Linares, J. C. (2017). Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo. Forest Ecology and Management, 406, 72–82. [CrossRef]
  • • Linder, M. (2000). Developing adaptive forest management strategies to cope with climate change. Tree Physiology, 20(5_6), 299–307. [CrossRef] .
  • • Martin‐Benito, D., Pederson, N., Köse, N., Doğan, M., Bugmann, H., Mosulishvili, M., & Bigler, C. (2018). Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus. Global Ecology and Biogeography, 27(11), 1314–1325. [CrossRef]
  • • Martinez-Meier, A., Sanchez, L., Pastorino, M., Gallo, L., & Rozenberg, P. (2008). What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. Forest Ecology and Management, 256(4), 837–843. [CrossRef]
  • • Mausolf, K., Wilm, P., Härdtle, W., Jansen, K., Schuldt, B., Sturm, K., von Oheimb, G., Hertel, D., Leuschner, C., & Fichtner, A., Hertel, D., Leuschner, C., & Fichtner, A. (2018). Higher drought sensitivity of radial growth of European beech in managed than in unmanaged forests. Science of the Total Environment, 642, 1201–1208. [CrossRef]
  • • McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719–739. [CrossRef]
  • • Mendivelso, H. A., Camarero, J. J., Gutiérrez, E., & Zuidema, P. A. (2014). Timedependent effects of climate and drought on tree growth in a Neotropical dry forest: short-term tolerance vs. long-term sensitivity. Agricultural and Forest Meteorology, 188, 13–23. [CrossRef]
  • • Naudts, K., Chen, Y., McGrath, M. J., Ryder, J., Valade, A., Otto, J., & Luyssaert, S. (2016). Europe’s forest management did not mitigate climate warming. Science, 351(6273), 597–600. [CrossRef]
  • • Navarro-Cerrillo, R. M., Sánchez-Salguero, R., Rodriguez, C., Duque Lazo, J. D., Moreno-Rojas, J. M., Palacios-Rodriguez, G., & Camarero, J. J. (2019). Is thinning an alternative when trees could die in response to drought? The case of planted Pinus nigra and P. Sylvestris stands in southern Spain. Forest Ecology and Management, 433, 313–324. [CrossRef]
  • • Noormets, A., Epron, D., Domec, J. C., McNulty, S. G., Fox, T., Sun, G., & King, J. S. (2015). Effects of forest management on productivity and carbon sequestration: A review and hypothesis. Forest Ecology and Management, 355, 124–140. [CrossRef]
  • • Pederson, N., Dyer, J. M., McEwan, R. W., Hessl, A. E., Mock, C. J., Orwig, D. A., Rieder, H. E., & Cook, B. I., Cook, B. I. (2014). The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecological Monographs, 84(4), 599–620 [CrossRef]
  • • Pretzsch, H., Forrester, D. I., & Bauhus, J. (2017). Mixed-species forests: ecology and management. Springer. Nature. Berlin, Germany: Springer-Verlag GmbH.
  • • Pretzsch, H., Schütze, G., & Uhl, E. (2013). Resistance of European tree species to drought stress in mixed versus pure forests: Evidence of stress release by inter-specific facilitation. Plant Biology, 15(3), 483–495. [CrossRef]
  • • R Development Core Team (2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • • Rubio-Cuadrado, Á., Camarero, J. J., del Río, M., Sánchez-González, M., RuizPeinado, R., Bravo-Oviedo, A., Gil, L., Montes, F., & Montes, F. (2018). Drought modifies tree competitiveness in an oak-beech temperate forest. Forest Ecology and Management, 429, 7–17. [CrossRef]
  • • Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. [CrossRef]
  • • Sohn, J. A., Hartig, F., Kohler,M., Huss, J., & Bauhus, J. (2016). Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecological Applications, 26(7), 2190–2205. [CrossRef]
  • • Splechtna, B. E., Dobrys, J., & Klinka, K. (2000). Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations. Annals of Forest Science, 57(2), 89–100. [CrossRef]
  • • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94. [CrossRef]
  • • Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. [CrossRef]
  • • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R (574pp). Springer Science & Business Media, New York, NY, USA.
APA KARA F (2022). Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. , 81 - 87. 10.5152/forestist.2021.20050
Chicago KARA Ferhat Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. (2022): 81 - 87. 10.5152/forestist.2021.20050
MLA KARA Ferhat Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. , 2022, ss.81 - 87. 10.5152/forestist.2021.20050
AMA KARA F Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. . 2022; 81 - 87. 10.5152/forestist.2021.20050
Vancouver KARA F Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. . 2022; 81 - 87. 10.5152/forestist.2021.20050
IEEE KARA F "Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests." , ss.81 - 87, 2022. 10.5152/forestist.2021.20050
ISNAD KARA, Ferhat. "Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests". (2022), 81-87. https://doi.org/10.5152/forestist.2021.20050
APA KARA F (2022). Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. FORESTIST, 72(1), 81 - 87. 10.5152/forestist.2021.20050
Chicago KARA Ferhat Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. FORESTIST 72, no.1 (2022): 81 - 87. 10.5152/forestist.2021.20050
MLA KARA Ferhat Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. FORESTIST, vol.72, no.1, 2022, ss.81 - 87. 10.5152/forestist.2021.20050
AMA KARA F Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. FORESTIST. 2022; 72(1): 81 - 87. 10.5152/forestist.2021.20050
Vancouver KARA F Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests. FORESTIST. 2022; 72(1): 81 - 87. 10.5152/forestist.2021.20050
IEEE KARA F "Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests." FORESTIST, 72, ss.81 - 87, 2022. 10.5152/forestist.2021.20050
ISNAD KARA, Ferhat. "Climate-Growth Relationships in Managed and Unmanaged Kazdağı Fir Forests". FORESTIST 72/1 (2022), 81-87. https://doi.org/10.5152/forestist.2021.20050