Yıl: 2009 Cilt: 20 Sayı: 2 Sayfa Aralığı: 79 - 83 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi

Öz:
Serbest radikaller, hücresel metabolizma sırasında veya ekzojen ajanlarla meydana gelen kimyasal ürünlerdir. Bu ürünler hücrelerde DNA, protein, lipid, karbonhidratlar gibi biyomoleküllerle etkileşime girmekte ve sonuçta meydana gelen oksidatif DNA hasarı mutajenite, karsinojenite ve yaşlanmaya yol açmaktadır. Bu hasar mekanizması, karbon merkezli şeker radikallerinin ve OH- veya H- bağlanmış heterosiklik baz radikallerinin oluşumuna yol açan, serbest radikallerin ayrılma ve birleşme tepkimelerinden ibarettir. Bu radikallerin daha fazla tepkimeye girmesi ise çok sayıda hasarlı ürünün oluşmasına yol açar. Oksidatif DNA hasarının önemini ve mekanizmasını anlayabilmek için doğru ve kesin ölçümlerin yapılması gereklidir. Bu amaçla, geçmişten günümüze; immunokimyasal teknikler, kapillar elektroforez, tek hücre jel elektroforezi (Comet testi), alkalin elusyon testi ve kromatografi gibi çeşitli analitik yöntemler kullanılmıştır. Bu yöntemlerden gaz kromatografi kütle spektrometresi (GC-MS) ve likit kromatografi kütle spektrometresi (LC-MS) çok sayıda hasarlı ürünün tanımlanması ve miktarının ölçülmesinde günümüzde yaygın olarak kullanılırlar. Hazırlanan bu derlemede oksidatif DNA hasarının oluşum mekanizması, hasara neden olan etmenler ve hasarın tespitinde kullanılan kromatografik yöntemler hakkında bilgi verilmesi amaçlanmıştır.
Anahtar Kelime: mutajenez serbest radikaller sıvı kromotografi DNA hasarı DNA karbonhidratlar lipit proteinler karsinogenez

Konular: Biyokimya ve Moleküler Biyoloji

Oxidative DNA damage and its chromatographic determination

Öz:
Free radicals are produced in cells by cellular metabolism and exogenous agents. These specie reacts with biomolecules in cells, including DNA, proteins, lipids and carbonhydrates. The resulting oxidative damage to DNA, is implicated in mutagenesis, carcinogenesis, and aging. Mechanism of damage involve abstractions and addition reactions by free radicals leading to carbon-centered sugar radicals and OH- or H- adduct radicals of heterocyclic bases. Further reactions of these radicals yield numerous products. To understand the importance and mechanism of DNA damage it is necessary to carry out accurate and precise measurements. For this purpose from past until today; different analytical techniques such as immunochemical techniques, capillary electrophoresis, single-cell gel electrophoresis (comet assay), alkaline elution assay and chromatographic techniques have been used. Techniques that employ gas chromatography (GC) and liquid chromatography (LC) with mass spectrometry (MS) measure numerous products, and provide identification and accurate quantification. This review evaluated mechanism of DNA damage, DNA-damaging factors and determination methods.
Anahtar Kelime: lipids proteins carcinogenesis mutagenesis free radicals liquid chromatography DNA damage DNA carbohydrates

Konular: Biyokimya ve Moleküler Biyoloji
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Abu-Qare A, Abou-Donia M (2000). Increased 8-hydroxy-2’-deoxyguanosine, a biomarker of oxidative DNA damage in rat urine following a single dermal dose of DEET ( N, N-diethyl-m-toluamide), and permethrin, alone and in combination. Toxicol Lett, 117 (3): 151-160.
  • Ates I, Suzen HS, Aydin A, Karakaya A (2004). The oxidative DNA base damage in testes of rats after intraperitoneal cadmium injection. Biometals, 17 (4): 371-7.
  • Burçak G, Andican G (2004). Oksidatif DNA hasarı ve yaşlanma. Cerrahpasa J Med, 35 (4): 159-169.
  • Collins A (2002). Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: An approach to consensus. Carcinogenesis, 23 (12): 2129–33.
  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: Mechanism, mutation and disease. FASEB J, 17(10): 1195-214.
  • De Martinis BS, De Lourdes Pires Bianchi M (2001). Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharmacol Res, 44 (4): 317-20.
  • De Martinis BS, De Lourdes Pires Bianchi M (2002). Methodology for urinary 8-hydroxy-2’-deoxyguanosine analysis by hplc with electrochemical detection. Pharmacol Res, 46 (2): 129-31.
  • Dizdaroğlu M (1994). Chemical determination of oxidative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol, 234, 3-16.
  • Dizdaroglu M (1998). Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography-mass spectrometry. Free Radic Res, 29 (6): 551-63.
  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002). Free radical-induced damage to DNA: Mechanism and measurement. Free Radic Biol Med, 32 (11): 1102-15.
  • Foresti M, Migliore L (1993). Effect of bacitracin on erythroid differentiation of mel cells. Cell Biol Toxicol, 9 (4), 377-84.
  • Fraga CG, Shinenaga MK, Park JW, Degan P, Ames BN (1990). Oxidative damage to DNA during aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA, 87 (12): 4533-7.
  • Guetens G, De Boeck G, Highley M, Van Oosterom AT, De Brujin EA (2002). Oxidative DNA damage: Biological significance and methods of analysis. Crit Rev Clin Lab Sci, 39 (4-5): 331–457.
  • Gülbahar Ö (2007). Protein oksidasyonunun mekanizması, önemi ve yaşlılıkla ilişkisi. Turkish Journal of Geriatrics, 10 (1): 43-48.
  • Halliwell B (2000). Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come?. Am J Clin Nutr, 72 (5): 1082-7.
  • Helbock HJ, Beckman KB, Ames BN (1999). 8-hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol, 300, 156-66.
  • Hoffmann S, Spitkovsky D, Radicella P, Epe B, Wiesner RJ (2003). Reactive oxygen species derived from the mitochondrial respiratory chain are not responsible fort he basal levels of oxidative base modifications observed in nuclear DNA of mammalian cells. Free Radic Biol Med, 36 (6): 765-773.
  • Kotandeniya D, Ganley B, Gates KS (2002). Oxidative DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). Bioorg Med Chem Lett, 12 (17): 2325-9.
  • Kulaksız G, Sancar A (2007). Nükleotid eksizyon onarımı ve kanser. Turk J Biochem, 32 (3): 104-111.
  • Lee CH, Kamijima M, Kim H, Shibata E, Ueyama J, Suzuki T, Takagi K, Saito I, Gotoh M, Hibi H, Naito H, Nakajima T (2007). 8-Hydroxydeoxyguanosine levels in human leukocyte and urine according to exposure to organophosphorus pesticides and paraoxonase 1 genotype. Int Arch of Occup Environ Health, 80 (3): 217-27.
  • Li PY, Chang YC, Tzang BS, Chen CC, Liu YC (2007). Antibiotic amoxicillin induces DNA lesions in mammalian cells possibly via the reactive oxygen species. Mutat Res, 629 (2): 133-9.
  • Lim KS, Jeyaseelan K, Whiteman M, Jenner A, Halliwell B (2005). Oxidative damage in mitochondrial DNA is not extensive. Ann N Y Acad Sci, 1042, 210-20.
  • Lodovici M, Casalini C, Briani C, Dolara P (1997). Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology, 117 (1): 55-60.
  • McDorman KS, Pachkowski BF, Nakamura J , Wolf DC, Swenberg JA (2005). Oxidative DNA damage from potassium bromate exposure in long-evans rats is not enhanced by a mixture of drinking water disinfection by-products. Chem Biol Interact, 152 (2-3): 107-17.
  • Midorikawa K, Uchida T, Okamoto Y, Toda C, Sakai Y, Ueda K, Hiraku Y, Murata M, Kawanishi S, Kojima N (2004). Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage. Chem Biol Interact, 150 (3): 271-81.
  • Murata M, Kawanishi S (2004). Oxidative DNA damage induced by nitrotyrosine, a biomarker of inflammation. Biochem Biopyhs Res Commun 316 (1): 123-8.
  • Müller I, Jenner A, Bruchelt G, Niethammer D, Halliwell B (1997). Effect of concentration on the cytotoxic mechanism of doxorubicin-apoptosis and oxidative DNA damage. Biochem Biopyhs Res Commun, 230 (2): 254-7.
  • Oteiza PI, Olin KL, Fraga C G, Keen CL (1995). Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr, 125 (4): 823-9.
  • Patel S, Pandey AK, Bajpayee M, Parmar D, Dhawan A (2006). Cypermethrin-induced DNA damage in organs and tissues of the mouse: Evidence from the commet assay. Mutat Res, 607 (2): 176-83.
  • Pei Z, Baofeng L, Yitong L (2005). DNA damaging effects of carbofuran and its main metabolites on mice by micronucleus test and single cell gel electrophoresis. Sci China C Life Sci, 48 (1): 40-7.
  • Rupp DW (2006). Molecular mechanism of DNA damage, October 2006, Web erişim: http://radonc.yale.edu/training/pdf/molecular_ mechanisms.pdf Erişim Tarihi: 10 Mart 2008
  • Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004). Molecular mechanisms of mammalian DNA repair and the damage checkpoints. Annu Rev Biochem, 73, 39-85.
  • Shigenaga MK, Ames BN (1991). Assays for 8-hydroxy-2’-deoxyguanosine: A biomarker of in vivo oxidative DNA damage. Free Radic Biol Med, 10 (3-4): 211-6.
  • Sakano K, Oikawa S, Hiraku Y, Kawanishi S (2004). Oxidative DNA damage induced by a melatonin metabolite, 6-hydroxymelatonin, via a uniqe non-o-quinone type of redox cycle. Biochem Pharmacol, 68 (9): 1869-78.
  • Siomek A, Tujakowski J, Gackowski D, Rozalski R, Foksinski M, Dziaman T, Roszkowski K, Olinski R (2006). Severe oxidatively damaged DNA after cisplatin treatment of cancer patients. Int J Cancer, 119 (9): 2228-30.
  • Valavanidis A, Vlachogianni T, Fiotakis C (2009). 8-hydroxy-2’-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stres and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 27 (2): 120-39.
  • Yokuş B, Çakır DÜ (2002). İn vivo oksidatif DNA hasarı biyomarkerı; 8-hydroxy-2’-deoxyguanosine. T Klin J Med Sci, 22, 535-543.
  • Williams GM, Jeffrey AM (2000). Oxidative DNA damage: Endogenous and chemically induced. Regul Toxicol Pharmacol, 32 (3): 283-92.
APA Atmaca E, Aksoy A (2009). Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. , 79 - 83.
Chicago Atmaca Enes,Aksoy Abdurrahman Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. (2009): 79 - 83.
MLA Atmaca Enes,Aksoy Abdurrahman Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. , 2009, ss.79 - 83.
AMA Atmaca E,Aksoy A Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. . 2009; 79 - 83.
Vancouver Atmaca E,Aksoy A Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. . 2009; 79 - 83.
IEEE Atmaca E,Aksoy A "Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi." , ss.79 - 83, 2009.
ISNAD Atmaca, Enes - Aksoy, Abdurrahman. "Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi". (2009), 79-83.
APA Atmaca E, Aksoy A (2009). Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 20(2), 79 - 83.
Chicago Atmaca Enes,Aksoy Abdurrahman Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 20, no.2 (2009): 79 - 83.
MLA Atmaca Enes,Aksoy Abdurrahman Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, vol.20, no.2, 2009, ss.79 - 83.
AMA Atmaca E,Aksoy A Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi. 2009; 20(2): 79 - 83.
Vancouver Atmaca E,Aksoy A Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi. 2009; 20(2): 79 - 83.
IEEE Atmaca E,Aksoy A "Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi." Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi, 20, ss.79 - 83, 2009.
ISNAD Atmaca, Enes - Aksoy, Abdurrahman. "Oksidatif DNA hasarı ve kromatografik yöntemlerle tespit edilmesi". Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 20/2 (2009), 79-83.