Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region

Yıl: 2010 Cilt: 19 Sayı: 3 Sayfa Aralığı: 313 - 349 Metin Dili: Türkçe İndeks Tarihi: 29-07-2022

Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region

Öz:
Bu çalışmada, deprem kaynak (yırtılma) parametrelerinin uzak alandaki tsunami dalga genlik, frekans içeriği ve kıyılara olan varış zamanlarına olan etkilerini göstermek için uygulanan duyarlılık analizlerinin sonuçları gösterilmiştir. İncelenen deprem parametreleri, deprem lokasyonu, kaynak mekanizması (doğrultu, dalım ve kayma açıları), faylanan alanın boyutları, maksimum yerdeğiştirme miktarı ve odak derinliğidir. Doğu Akdeniz bölgesi kıyılarında seçilen hayali akış ölçüm (tide-gauge) noktalarında oluşacak yapay su yüzeyi yüksekliklerini elde edebilmek için, doğrusal olmayan sığ su teorisine dayalı olan TUNAMI-N2 matematiksel simülasyon programı kullanılmıştır. Sonuç olarak, uzak alanda tsunami dalga özelliklerini etkileyen en önemli kaynak parametrelerinin; [1] kaynakta boşalan enerjinin miktarını gösteren sismik moment ($M _o$= μ × A × D) ile depremin büyüklüğü olduğu görülmüştür. Tsunami dalgalarının genlik ve şekilleri bu parametrelere bağlı olarak belirgin şekilde değişim göstermektedir; [2] bir diğer parametre deprem merkezüstünün (episantırının) doğru olarak belirlenebilmesidir. Duyarlılık analizi sonuçlarına göre, deprem merkezüstünün değişmesi her ne kadar başlangıç tsunami dalga yüksekliğini değiştirmese de, sonuç tsunami dalga özelliklerini ve bu dalgaların kıyılara varış zamanlarını etkilemektedir. Özellikle dalganın deniz içerisinde deprem kaynağından uzağa doğru ilerlemesi ile dalga genliklerinde azalma meydana gelmektedir; [3] odak mekanizması çözümünün değişmesi tsunami dalgalarının yayılma doğrultularını, şekil, genlik ve dalgaların kıyılara ulaşma sürelerini değiştirmektedir; [4] düşey kosismik yerdeğiştirme ve başlangıç tsunami dalgası arasındaki doğrusal ilişkiden dolayı, seçilen ölçüm noktalarında hesaplanan yapay tsunami dalgalarının özellikleri bu parametrenin değişmesinden etkilenmektedir; [5] ayrıca, deprem kaynağı ile kıyılar arasında yer alan adalar, deniz dağları, yığışım prizması ve hendekler gibi süreksizlik yapılarının varlığı, kıyı batimetrisi (örn; deniz içerisine yayılmış sedimanter kıta alanı) ve kıyı şeklinin de tsunami dalga genliklerini etkiledikleri dalga simülasyonlarında açıkça görülmektedir. Tarihsel kayıtlar doğu Akdeniz bölgesinde Hellenik-Kıbrıs yayları boyunca tsunami riskini vurgulamaktadır. Bu yüzden dalma-batma zonlarındaki potansiyel tsunami kaynaklarının yüksek çözünürlüklü kıyı batimetri verisi ile detaylı olarak çalışılması simülasyon sonuçlarımızı doğrulamak için gereklidir.
Anahtar Kelime:

Konular: Jeoloji

Deprem kaynak parametreleri, kırılma (yırtılma) özellikleri ve uzak alan tsunami dalgaları arasındaki ilişkiler için duyarlılık analizleri: Doğu Akdeniz bölgesinden örnek çalışmalar

Öz:
We present several sensitivity tests, that were applied to exhibit the effects of earthquake source rupture characteristics on amplitudes, frequency contents and arrival times of earthquake generated tsunami waves in the far field, as case studies in the eastern Mediterranean. The investigated earthquake parameters are principally epicentral location, focal mechanism parameters (strike, dip and rake angles), faulting area dimensions, maximum displacement and focal (centroid) depth. We have implemented a numerical method of TUNAMI-N2 based on non-linear shallowwater theory to obtain synthetic water surface fluctuations at selected pseudo tide gauge locations in the eastern Mediterranean. It has been observed that the most important source parameters that effect tsunami wave characteristics in the far field are: [1] magnitude and seismic moment ($M _o$= μ × A × D) of earthquake that is a measure of the energy release radiated at the centroid depth. We have observed that wave amplitudes and shapes change considerably with variation of magnitude and seismic moment since tsunami waves develop in direct proportional relation to them; [2] another parameter is the accurate estimation of tsunamigenic earthquake epicentre. Variation of the earthquake location does not significantly affect the initial tsunami wave heights, but final tsunami wave characteristics and their arrival times have been slightly changed due to the variation of distance between the epicentre and coastal plains along the path. Especially, wave spreading causes tsunami waves to decrease in amplitude as they move away from earthquake source; [3] variation in focal mechanism solutions modify the tsunami wave propagation directions, wave amplitudes, shapes and arrival times of tsunami waves observed at the coastal plains; [4] in addition, due to the linearity between the amount of vertical co-seismic displacement and initial tsunami wave, very different tsunami amplitudes were obtained at each pseudo tide gauge stations in case of the variation in maximum displacement; [5] details of local bathymetry (e.g., extended sedimentary shelf area) and the sea bottom irregularities (e.g., sea-mounts, volcanoes, accretionary prisms, trenches, pressure ridges) clearly have crucial effects on tsunami wave characteristics in the far field. Historical records confirm that the eastern Mediterranean region is at risk from tsunamigenic sources located on the Hellenic-Cyprus arcs. Thus, higher resolution near-shore bathymetry data as well as a detailed study of potential tsunami sources in segments of subduction zones are necessary to verify our simulation results.
Anahtar Kelime:

Konular: Jeoloji
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • ABE, K. 1973. Tsunami and mechanism of great earthquakes. Physics of the Earth and Planetary interiors 7, 143–153.
  • ABE, K. & OKADA, M. 1995. Source model of the Noto-Hanto-Oki earthquake tsunami of 7 February 1993. Pure and Applied Geophysics 144, 621–631.
  • AIDA, I. 1974. Numerical computation of a tsunami based on a fault origin model of an earthquake. Zishin 27, 141–154.
  • AKI, K. 1966. Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. 2. Estimation of earthquake movement, released energy and stress-strain drop from G wave spectrum. Bulletin of the Earthquake Research Institute, University of Tokyo 44, 23–88.
  • AKI, K & RICHARDS, P.G. 1980. Quantitative Seismology: Theory and Methods. W.H. Freeman and Co., New York.
  • AKI, K. & RICHARDS, P.G. 2002. Quantitative Seismology. 2nd edition, University Science Books.
  • AKSU, A.E., HALL, J. & YALTIRAK, C. 2008. Miocene–Recent evolution of Anaximander Mountain and Finike Basin at the junction of Hellenic and Cyprus Arcs, Eastern Mediterranean. Marine Geology, doi: 10.1016/j.margeo.2008.04.008.
  • ALÇİÇEK, M.C., TEN VEEN, J.H. & ÖZKUL, M. 2006. Neotectonic development of the Çameli Basin, southwestern Anatolia, Turkey. In: ROBERTSON, A.H.F. & MOUNTRAKIS, D. (eds), Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications 260, 591– 611.
  • AMBRASEYS, N.N. 1962. Data for the investigation of the seismic sea waves in the Eastern Mediterranean. Bulletin of the Seismological Society of America 52, 895–913.
  • AMBRASEYS, N.N., MELVILLE, C.P. & ADAMS, R.D. 1994. The Seismicity of Egypt, Arabia and the Red Sea: A Historical Review. Cambridge University Press, Cambridge, U.K.
  • AMBRASEYS, N.N. & MELVILLE, C.P. 1995. Historical evidence of faulting in eastern Anatolia and northern Syria. Annales Geofisica 38, 337–343.
  • AMMON, C.J., JI, C., THIO, H.K., ROBINSON, D., NI, S., HJORLEIFSDOTTIR, V., KANAMORI, H., LAY, T., DAS, S., HELMBERGER, D., ICHINOSE, G., POLET, J. & WALD, D. 2005. Rupture process of the 2004 Sumatra – Andaman earthquake. Science 308, 1133–1139.
  • AMMON, C.J., KANAMORI, H., LAY, T. & VELASCO, A.A. 2006. The 17 July 2006 Java tsunami earthquake. Geophysical Research Letters 33, doi:10.1029/2006GL028005.
  • ANTONOPOULOS, J. 1980. Data from investigation on seismic seawaves events in the Eastern Mediterranean from the birth of Christ to 1980 AD (6 parts). Annali di Geofisica 33, 141–248.
  • BARKAN, R., TEN BRINK, U. & LIN, J. 2009. Far field tsunami simulations of the 1755 Lisbon earthquake: implications for tsunami hazard to the U.S. East Coast and the Caribbean. Marine Geology 264, 109–122.
  • BEN-AVRAHAM, Z., GARFUNKEL, Z. & LAZAR, M. 2008. Geology and evolution of the southern Dead Sea Fault with emphasis on subsurface structure. Annual Review of Earth and Planetary Sciences 36, 357–387.
  • BEN-MENAHEM, A. & ROSENMAN, M. 1972. Amplitude patterns of tsunami waves from submarine earthquakes. Journal of Geophysical Research 77, 3097–3128.
  • BILEK, S.L. 2009. Seismicity along the South American subduction zone: Review of large earthquake, tsunamis, and subduction zone complexity. Tectonophysics, doi: 10.1016/j.tecto.2009. 02.037.
  • BILEK, S.L. & LAY, T. 1999. Rigidity variations with depth along interplate megathrust faults in subduction zones. Nature 400, 443–446.
  • BILHAM, R. 2008. Tsunamigenic Middle Earth. Nature Geoscience 1, 211–212.
  • BOHNHOFF, M., HARJES, H.-P. & MEIER, T. 2005. Deformation and stress regimes in the Hellenic subduction zone from focal mechanisms. Journal of Seismology 9, 341–366.
  • BOND, A. & SPARKS, S.J. 1976. The Minoan eruption of Santorini, Greece. Journal of the Geological Society, London 132, 1–16.
  • BONILLA, M.G., MARK, R.K. & LIENKAEMPER, J.J. 1984. Statistical relations among earthquake magnitude, surface rupture length and surface fault displacement. Bulletin of the Seismological Society of America 74, 2379–2411.
  • BOZKURT, E. 2001. Neotectonics of Turkey – a synthesis. Geodicamica Acta 14, 3–30.
  • BRYANT, E.A. 1991. Natural Hazards. Cambridge University Press, 58–85.
  • BRYANT, E.A. 2001. Tsunami: The Underrated Hazard. Cambridge University Press.
  • CHATENOUX, B. & PEDUZZI, P. 2007. Impacts from the 2004 Indian Ocean tsunami: analysing the potential protecting role of environmental features. Natural Hazards 40, 289–304.
  • CITA, M.B. & ALOISI, G. 2000. Deep-sea tsunami deposits triggered by the explosion of Santorini (3500 y BP), eastern Mediterranean. Sedimentary Geology 135, 181–203
  • DAO, M.H. & TKALICH, P. 2007. Tsunami propagation modelling – a sensitivity study. Natural Hazards and Earth System Sciences 7, 741–754.
  • EL-SAYED, A., FOMANELLI, F. & PANZA, G. 2000. Recent seismicity and realistic waveforms modelling to reduce the ambiguities about 1303 seismic activity in Egypt. Tectonophysics 328, 341–357.
  • ERGİN, K., GÜÇLÜ, U. & UZ, Z. 1967. A Catalogue of Earthquakes of Turkey and Surrounding Area (11 A.D. to 1964 A.D). İstanbul Technical University Press, İstanbul, Turkey.
  • EVAGELATOU-NOTARA, F. 1993. Earthquakes in Byzantium from the 13th to the 15th Century – A Historical Examination 24, Parousia, Athens [in Greek with English summary].
  • FREUND, L.B. & BARNETT, D.M. 1976. A two-dimensional analysis of surface deformation due to dip-slip faulting. Bulletin of the Seismological Society of America 66, 667–675.
  • FOKAEFS, A. & PAPADOPOULOS, G.A. 2006. Tsunami hazard in the eastern Mediterranean: strong earthquakes and tsunamis in Cyprus and the Levantine Sea. Natural Hazard, doi:10.1007/S11069-006-9011-3.
  • FUJI, Y. & MATSU’URA, M. 2000. Regional difference in scaling laws for large earthquakes and its tectonic implication. Pure and Applied Geophysics 157, 2283–2302.
  • FUJIMA, K. 2001. Long wave propagation on large roughness. ITS Proceedings 7(22), 891–895.
  • FUKAO, Y. 1979. Tsunami earthquakes and subduction processes near deep-sea trenches. Journal of Geophysical Research 84, 2303–2314.
  • GARDOSH, M.A. & DRUCKMAN, Y. 2006. Seismic stratigraphy, structure and tectonic evolution of the Levantine Basin, offshore Israel. In: ROBERTSON, A.H.F. & MOUNTRAKIS, D. (eds), Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications 260, 201– 227.
  • GARFUNKEL, Z., ZAK, Y. & FREUND, R. 1981. Active faulting in the Dead Sea rift. Tectonophysics 80, 1–26.
  • GEBCO-BODC 1997. General Bathymetric Chart of the Oceans. Digital Version, Distributed on CD-ROM by the British Oceanographic Data Centre, Birkenhead, U.K.
  • GEIST, E.L. 1999. Local tsunamis and earthquake source parameters. Advances in Geophysics 39, 117–198.
  • GEIST, E.L. 2002. Complex earthquake rupture and local tsunamis. Journal of Geophysical Research 107, doi: 10.1029/2000JB 000139.
  • GEIST, E.L. 2005. Rapid tsunami models and earthquake source parameters: far-field and local applications. ISET Journal of Earthquake Technology Paper no. 460, 42, 127–136.
  • GEIST, E.L. & DMOWSKA, R. 1999. Local tsunamis and distributed slip at the source. Pure and Applied Geophysics 154, 485–512.
  • GICA, E., TENG, M.H., ASCE, M., LIU, P.L.-F., ASCE, F., TITOV, V.V. & ZHOU, H. 2007. Sensitivity analysis of source parameters for earthquake generated distant tsunamis. Journal of Waterways, Port, Coasts and Ocean Engineering 133, 429–441.
  • GICA, E., SPILLANE, M.C., TITOV, V.V., CHAMBERLIN, C.D. & NEWMAN, J.C. 2008. Development of the forecast propagation database for NOAA's short-term inundation forecasting for tsunamis (SIFT). NOAA Technical Memorandum OAR PMEL-139.
  • GOLDSTEIN, P., DODGE, D. & FIRPO, M. 1999. SAC2000: Signal processing and analysis tools for seismologists and engineers. UCRL-JC-135963, Invited Contribution to the IASPEI International Handbook of Earthquake and Engineering Seismology.
  • GOLDSTEIN, P., DODGE, D., FIRPO, M. & MINNER, L. 2003. SAC2000: Signal processing and analysis tools for seismologists and engineers. In: LEE, W.H.K., KANAMORI, H., JENNINGS, P.C. & KISSLINGER, C. (eds), Invited Contribution to ‘The IASPEI International Handbook of Earthquake and Engineering Seismology’, Academic Press, London.
  • GUIDOBONI E. & COMASTRI, A. 1997. The large earthquake of 8 August 1303 in Crete: seismic scenario and tsunami in the Mediterranean area. Journal of Seismology 1, 55–72.
  • GUIDOBONI, E. & COMASTRI, A. 2005a. Catalogue of Earthquakes and Tsunamis in the Mediterranean area From the 11th to the 15th Century. INGV-SGA, Bologna.
  • GUIDOBONI, E. & COMASTRI, A. 2005b. Two thousand years of earthquakes and tsunamis in the Aegean are (from 5th BC to 15th century). International Symposium on the Geodynamics of Eastern Mediterranean: Active Tectonics of the Aegean Region, Abstract Book: Kadir Has University, 15–18 June, 2005, İstanbul, Turkey, p. 242.
  • GUIDOBONI, E., COMASTRI, A. & TRAINA, G. 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. ING-SGA, Bologna, p. 504.
  • HALL, J., AKSU, A.E., YALTIRAK, C. & WINSOR, J.D. 2008. Structural architecture of the Rhodes Basin: a deep depocentre that evolved since the Pliocene at the junction of Hellenic and Cyprus Arcs, Eastern Mediterranean. Marine Geology, doi:10.1016/j.margeo.2008.02.007.
  • HATORI, T. 1963. Directivity of tsunamis. Bulletin of Earthquake Research Institute 41, 61–81.
  • HEINRICH, P., SCHINDELE, F. & GUIBORG, S. 1998. Modeling of the February 1996 Peruvian tsunami. Geophysical Research Letters 25, 2687–2690.
  • HEINRICH, P., PIATANESI, A., HÉBERT, H. & OKAL, E.A. 2000. Near-field modeling of the July 17, 1998 event in Papua New Guinea. Geophysical Research Letters 27, 3037–3040.
  • HORILLO, J., KOWALIK, Z. & SHIGIHARA, Y. 2006. Wave dispersion study in the Indian Ocean Tsunami of December 26, 2004. Science of Tsunami Hazards 25, 42–63.
  • IMAMURA, F. 1995. Tsunami Numerical Simulation with the Staggered Leap-frog Scheme (Numerical Code of TUNAMI-N1). School of Civil Engineering, Asian Institute of Technology and Disaster Control Research Center, Tohoku University.
  • IMAMURA, F. & GOTO, C. 1988. Truncation error in numerical tsunami simulation by the finite difference method. Coastal Engineering in Japan 31, 245–263.
  • IMAMURA, F. & IMTEAZ, M.A. 1995. Long waves in two layer, governing equations and numerical model. Journal of Science of Tsunami Hazards 13, 3–24.
  • IMAMURA, F., YALÇINER, A.C. & ÖZYURT, G. 2006. Tsunami Modelling Manual (TUNAMI-N2 model), p. 58.
  • IOUALALEN, M. 2007. Sensitivity test on relations between tsunami signal and seismic rupture characteristics: the 26 December 2004 Indian Ocean event case study. Environmental Modelling and Software, doi:10.1016/2007.07.007, 1–9.
  • IOUALALEN, M., PELINOVSKY, E., ASAVANANT, J., LIPIKORN, R. & DESCHAMPS, A. 2007. On the weak impact of the 26 December Indian Ocean tsunami on the Bangladesh coast. Natural Hazards and Earth System Sciences 7, 141–147.
  • KAJIURA, K. 1970. Tsunami source, energy and the directivity of wave radiation. Bulletin of the Earthquake Research Institute 48, 835– 869.
  • KANAMORI, H. 1972. Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors 6, 346–359.
  • KANAMORI, H. & ANDERSON, D.L. 1975. Theoretical basis for some empirical relations in seismology. Bulletin of the Seismological Society of America 65, 1073–1095.
  • KEMPLER, D. & GARFUNKEL, Z. 1991. The northeast Mediterranean triple junction from a plate kinematics point of view. Bulletin of Technical University of İstanbul 44, 203–232.
  • KIKUCHI, M. & KANAMORI, H. 1991. Inversion of complex body waves – III. Bulletin of the Seismological Society of America 81, 2335–2350.
  • KIKUCHI, M. & KANAMORI, H. 1995. Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure and Applied Geophysics 144, 441–453, doi:10.1007/BF00874377
  • KONCA, A.Ö., AVOUAC, J-P., SLADEN, A., MELTZNER, A. J., SIEH, K., FANG, P., ZHENHONG, L., GALETZKA, J., GENRICH, J., CHLIEH, M., NATAWIDJAJA, D. H., BOCK, Y., FIELDING, E., JI, C. & HELMBERGER, D.V. 2008. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456, doi:10.1038/nature 07572.
  • KONSTANTINOU, K.I., PAPADOPOULOS, G.A., FOKAEFS, A. & ORPHANOGIANNAKI, K. 2005. Empirical relationships between aftershock area dimensions and magnitude for earthquakes in the Mediterranean Sea region. Tectonophysics 403, 95–115.
  • KOSHIMURA, S., IMAMURA, F. & SHUTO, N. 2001. Characteristics of tsunamis propagating over oceanic ridges: numerical simulation of the 1996 Irian - Jaya earthquake tsunami. Natural Hazards 24, 213–229.
  • KURT, H., DEMİRBAĞ, E. & KUŞCU, İ. 1999. Investigation of submarine active tectonism in the Gulf of Gökova, southwest Anatoliasoutheast Aegean sea, by multi-channel seismic reflection data. Tectonophysics 305, 477–496.
  • LAY, T., KANAMORI, H., AMMON, C.J., NEETLES, M., WARD, S.N., ASTER, R., BECK, S., BILEK, S.L., BRUDZINSKI, M.R., BUTLER, R., DESHON, H.R., EKSTROM, G., SATAKE, K. & SIPKIN, S. 2005. The great Sumatra Andaman earthquake of 26 December 2004. Science 308, 1127–1132.
  • LEGG, M.R. & BORRERO, J.C. 2001. Tsunami potential of major restraining bends along submarine strike slip faults. ITS 2001 Proceedings, Session 1, Number 1–9, 331–342.
  • LE PICHON, X., LYBERIS, N. & ALVAREZ, F. 1984. Subsidence history of the North Aegean trough, Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publications 17, 27–741.
  • LIU, P.L.-F., CHO, Y.-S., YOON, S.-B. & SEO, S.-N. 1994. Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In: EL-SABH, M.I. (ed), Recent Development in Tsunami Research. Kluwer Academic, Dordrecht, 99–115.
  • LIU, P.L.-F., CHO, Y.-S., BRIGGS, M.J., KANOĞLU, U. & SYNOLAKIS, C.E. 1995. Runup of solitary waves on a circular island. Journal of Fluid Mechanics 302, 259–285.
  • LIU, P.L.-F., LYNETT, P., FERNANDO, J., JAFFE, B.E., FRITZ, H.M., HIGMAN, B., MORTON, R., GOFF, J. & SYNOLAKIS, C.E. 2005. Observations by the International Tsunami Survey Team in Sri Lanka. Science 308, 1595.
  • LORITO, S., TIBERTI, M.M., BASILI R., PIATANESI, A. & VALENSISE, G. 2008. Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to Southern Italy. Journal of Geophysical Research 113, B01301, doi:10.1029/ 2007/JB004943.
  • LOWE, R.J., FALTER, J.L., BANDET, M.D., PAWLAK, G., ATKINSON, M.J., MONISMITH, S.G. & KOSEFF, J.R. 2005. Spectral wave dissipation over a barrier reef. Journal of Geophysical Research 110, C0400, doi:10.1029/2004JC002711.
  • MAI, P.M. & BEROZA, G.C. 2000. Source scaling properties from finite-fault-rupture models. Bulletin of the Seismological Society of America 90, 604–615.
  • MASCLE, J. & MARTIN, L. 1990. Shallow structure and recent evolution of the Aegan Sea: a synthesis based on continuous reflection profiles. Marine Geology 94, 271–299.
  • MATSUYAMA, M., WALSH, J.P. & YEH, H. 1999. The effect of bathymetry on tsunami characteristics at Sisano Lagoon, Papua New Guinea. Geophysical Research Letters 26, 3513– 3516.
  • MCCLUSKY, S., BALASSANIAN, S., BARKA, A., DEMİR, E., ERGİNTAV, S., GEORGIEV, I., GÜRKAN, O., HAMBURGER, M., HURST, K., KAHLE, E., KASTENS, K., KEKELIDZE, G., KING, R., KOTZEV, V., LENK, O., MAHMOUD, S., MISHIN, A., NADARIYA, M., OUZOUNIS, A., PARADISSIS, D., PETER, Y., PRILEPIN, M., REILINGER, R., SANLI, I., SEEGER, H., TEALEB, A., TOKSÖZ, M.N. & VEIS, G. 2000. Global Positioning System constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus. Journal of Geophysical Research 105 (B3), 5695–5719.
  • MCCLUSKY, S., REILINGER, R., MAHMOUD, S., BEN SARI, D. & TEALEB, A. 2003. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International 155, 126–138.
  • MINOURA, K., IMAMURA, F., KURAN, U., NAKAMURA, T., PAPADOPOULOS, G.A., TAKAHASHI, T. & YALÇINER, A.C. 2000. Discovery of Minoan tsunami deposits. Geology 28, 59–62.
  • MIYOSHI, H. 1955. Directivity of the recent tsunamis. Journal of the Oceanographical Society of Japan 11, 151–156.
  • MIYOSHI, H. 1968. Re-consideration on directivity of the tsunami (I) (in Japanese). Zisin ii. 21, 121–138.
  • NI, S., KANAMORI, H. & HELMBERGER, D. 2005. Energy radiation from the Sumatra earthquake. Nature 434, p. 582.
  • OKADA, Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75, 1135–1154.
  • OKAL, E.A. 1988. Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards 1, 67–96.
  • OKAL, E.A. 1999. The 1998 Papua New Guinea tsunami: an overview. Proceedings of the International Conference on Tsunamis, Paris, 26–28 May 1998, 111–116, Europ. Comm. Directorate for Science, Research & Development, Paris, France.
  • OKAL, E.A. & SYNOLAKIS, C.E. 2008. Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophysical Journal Inernational 172, 995–1015.
  • ORTIZ, M., GÓMEZ-REYES, E. & VÉLEZ-MUÑOZ, H.S. 2001. A fast preliminary estimation model for transoceanic tsunami propagation. ITS 2000 Proceedings, 723–739.
  • PAPADOPOULOS, G.A. 2001. Tsunamis in the East Mediterranean: a catalogue for the area of Greece and adjacent seas. Proceedings of Joint IOC-IUGG International Workshop, Tsunami Risk Assessment Beyond 2000: Theory, Practice and Plans, 34–43, Russia.
  • PAPADOPOULOS, G.A. & FOKAEFS, A. 2005. Strong tsunamis in the Mediterranean Sea: a re-evaluation. ISET Journal of Earthquake Technology 42, 159–170.
  • PAPADOPOULOS, G.A., DASKALAKI, E., FOKAEFS, A. & GIRALEAS, N. 2007. Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in the east Hellenic Arc and Trench system. Natural Hazards and Earth System Sciences 7, 57–64.
  • PASYANOS, M.E., DREGER, D.S. & ROMANOWICZ, B. 1996. Towards real-time estimation of regional moment tensors. Bulletin of the Seismological Society of America 86, 1255–1269.
  • PEGLER, G. & DAS, S. 1996. Analysis of the relationship between seismic moment and fault length for large crustal strike-slip earthquakes between 1977–92. Geophysical Research Letters 23, 905–908.
  • PELINOVSKY, E., KHARIF, C., RIABOV, I. & FRANCIUS, M. 2001. Study of tsunami propagation in the Ligurian Sea. Natural Hazards and Earth System Sciences 1, 195–201.
  • PHILIP, H., CISTERNAS, A. & GORSHKOV, A. 1989. The Caucasus: an actual example of the initial stages of continental collision. Tectonophysics 161, 1–21.
  • PIATANESI, A. & TINTI, S. 2002. Numerical modeling of the September 8, 1905 Calabrian (southern Italy) tsunami. Geophysical Journal International 150, 271–284.
  • PIRES, C. & MIRANDA, M.A. 2003. Sensitivity of the adjoint method in the inversion of tsunami source parameters. Natural Hazards and Earth System Sciences 3, 341–351.
  • POISSON, A., WERNLI, R., SAĞULAR, E.K. & TEMİZ, H. 2003. New data concerning the age of the Aksu Thrust in the south of the Aksu valley, Isparta Angle (SW Turkey): consequences for the Antalya Basin and the Eastern Mediterranean. Geological Journal 38, 311–327.
  • POLET, J. & KANAMORI, H. 2000. Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International 142, 684–702.
  • REILINGER, R., MCCLUSKY, S., PARADISIS, D., ERGINTAV, S: & VERNANT, P. 2009. Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics, doi:10.1016/ j.tecto.2009.05.027.
  • ROMANOWICZ, B. & RUNDLE, J. 1993. On scaling relations for large earthquakes. Bulletin of the Seismological Society of America 83, 1294–1297
  • SALAMON, A., HOFFSTETTER, A., GARFUNKEL, Z. & RON, H. 1996. Seismicity of the eastern Mediterranean region: perspective from the Sinai subplate. Tectonophysics 263, 293–305.
  • SALAMON, A., ROCKWELL, T., WARD, S.N., GUIDOBONI, E. & COMASTRI, A. 2007. Tsunami hazard evaluation of the Eastern Mediterranean: historical analysis and selected modeling. Bulletin of the Seismological Society of America 97, 705–724.
  • SATAKE, K. 1988. Effects of bathymetry on tsunami propagation: application of ray tracing to tsunamis. Pure and Applied Geophysics 126, 27–36.
  • SATAKE, K. 1995. Linear and non-linear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics 144, 455–470.
  • SATAKE, K. & TANIOKA, Y. 1995. Tsunami generation of the 1993 Hokkaido-Nansei-Oki earthquake. Pure and Applied Geophysics 144, 803–822.
  • SBEINATI, M.R., DARAWCHEH, R. & MOUTY, M. 2005. The historical earthquakes of Syria: an anlysis of large and moderate earthquakes from 1365 B.C. to 1900 A.D. Annals of Geophysics 48, 347–436.
  • SCHATTNER, U. & BEN-AVRAHAM, Z. 2007. Transform margin of the northern Levant, eastern Mediterranean: from formation to reactivation. Tectonics 26, doi:10.1029/2007 TC002112.
  • SCHATTNER, U., BEN-AVRAHAM, Z., LAZAR, M. & HÜEBSCHER, C. 2006a. Tectonic isolation of the Levant basin offshore Galilee- Lebanon e effects of the Dead Sea fault plate boundary on the Levant continental margin, eastern Mediterranean. Journal of Structural Geology 28, 2049–2066.
  • SCHATTNER, U., BEN-AVRAHAM, Z., RESHEF, M., BAR-AM, G. & LZAR, M. 2006b. Oligocene–Miocene formation of the Haifa basin: Qishon–Sirhan rifting coeval with the Red Sea–Suez rift system. Tectonophysics 419, 1–12.
  • SCHEFFERS, A. & SCHEFFERS, A. 2007. Tsunami deposits on the coastline of west Crete (Greece). Earth and Planetary Science Letters 259, 613–624.
  • SHAW, B., AMBRASEYS, N.N., ENGLAND, P.C., FLOYD, M.A., GORMAN, G.J., HIGHAM, T.F.G., JACKSON, J.A., NOCQUET, J.M., PAIN, C.C. & PIGGOTT, M.D. 2008. Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geoscience 1, 265–276.
  • SHUTO, N. 1991. Numerical simulation of tsunamis: Its present and near future. Natural Hazards 4, 171–191.
  • SHUTO, N. 1993. Tsunami intensity and disasters. In: TINTI S. (ed), Tsunamis in the World. Kluwer, 197–216.
  • SHUTO, N., GOTO, C. & IMAMURA, F. 1990. Numerical simulation as a means of warning for near-field tsunami. Coastal Engineering in Japan 33 (2).
  • SMITH, W.H.F & SANDWELL, D.T. 1997a. Measured and estimated seafloor topography (version 4.2). World Data Centre-A for Marine Geology and Geophysics research publication RP-1, poster.
  • SMITH, W.H.F. & SANDWELL, D.T. 1997b. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957–1962.
  • STEIN, S. & OKAL, E. 2005. Speed and size of the Sumatra earthquake. Nature 434, 581–582.
  • SYNOLAKIS, C.E., LIU, P.L-F., YEH, H. & CARRIER, G. 1997. Tsunamigenic seafloor deformations. Science 278, 598–600.
  • ŞAROĞLU, F., EMRE, Ö. & KUŞÇU, İ. 1992. Active Fault Map of Turkey, 2 Sheets, MTA, Ankara, Turkey.
  • TAN, O. 2004. The Source Mechanism Properties and Rupture Histories of the Caucasian, Eastern Anatolian and North Western Iranian Earthquakes. Ph.D. Thesis, İstanbul Technical University, Graduate School of Institute of Science and Technology, İstanbul [unpublished].
  • TAN, O. & TAYMAZ, T. 2005. Self-similarity of the earthquakes occurred in the Eurasia-Arabia collision zone. İTÜ Dergisi/d 4, 105–115.
  • TAN, O. & TAYMAZ, T. 2006. Active tectonics of the Caucasus: Earthquake Source Mechanisms and Rupture Histories Obtained from Inversion of Teleseismic Body Waveforms. In: DİLEK, Y. (eds), Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America, Special Paper 409, 531 578, doi: 10.1130/2006.2409 (25).
  • TANIOKA, Y., RUFF L. & SATAKE, K. 1997. What controls the lateral variation of large earthquake occurrence along the Japan Trench? The Island Arc 6, 261–266.
  • TAYMAZ, T. 1990. Earthquake Source Parameters in the Eastern Mediterranean Region. Ph D. Thesis, Darwin College, University of Cambridge, U.K [unpubslihed].
  • TAYMAZ, T. 1993. The source parameters of Çubukdağ (Western Turkey) earthquake of 11 October 1986. Geophysical Journal International 113, 260–267.
  • TAYMAZ, T. 1996. S-P wave travel-time residuals from earthquakes and lateral inhomogeneity in the upper mantle beneath the Aegean and the Hellenic Trench near Crete. Geophysical Journal International 127, 545–558.
  • TAYMAZ, T. & PRICE, S. 1992. The 1971 May 12 Burdur earthquake sequence, SW Turkey: a synthesis of seismological and geological observations. Geophysical Journal International 108, 589–603.
  • TAYMAZ, T., JACKSON, J. & WESTAWAY, R. 1990. Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International 102, 695–731.
  • TAYMAZ, T., JACKSON, J.A. & MCKENZIE, D. 1991. Active tectonics of the north and central Aegean Sea. Geophysical Journal International 106, 433–490.
  • TAYMAZ, T., WESTAWAY, R. & REILINGER, R. 2004. Active faulting and crustal deformation in the Eastern Mediterranean Region. Tectonophysics 391, 1–9.
  • TAYMAZ, T., TAN, O. & YOLSAL, S. 2005. Sumatra Earthquake (Mw ~9.0) of December 26, 2004, source rupture processes and slip distribution modelling: preliminary rupture model. http://www.geop.itu.edu.tr/~taymaz/sumatra/.
  • TAYMAZ, T., YILMAZ, Y. & DİLEK, Y. 2007a. Introduction. In: TAYMAZ, T., YILMAZ, Y. & DİLEK, Y. (eds), The Geodynamics of the Aegean and Anatolia. Geological Society, London, Special Publications 291, 1–16.
  • TAYMAZ, T., WRIGHT, T.J., YOLSAL, S., TAN, O., FIELDING, E. & SEYITOĞLU, G. 2007b. Source characteristics of the 6 June 2000 Orta-Çankırı (central Turkey) earthquake: a synthesis of seismological, geological and geodetic (InSAR) observations, and internal deformation of the Anatolian plate. In: TAYMAZ, T., YILMAZ, Y. & DILEK, Y. (eds), The Geodynamics of the Aegean and Anatolia. Geological Society, London, Special Publication 291, 259–290.
  • TAYMAZ, T., TAN, O. & YOLSAL, S. 2008. Recent devasting earthquakes in Turkey and active tectonics of the Aegean and Marmara Seas. In: HUSEYBE, E.S. (ed), Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries. Springer Science and Business Media B.V. 2008, 47–55.
  • TITOV, V.V. & SYNOLAKIS, C.E. 1998. Numerical modeling of tidal wave runup. Journal of Waterways, Port, Coastal and Ocean Engineering 124, 157–171.
  • TITOV, V.V., MOFJELD, H.O., GONZALEZ, F.I. & NEWMAN, J.C. 1999. Offshore forecasting of Hawaiian tsunamis generated in Alaskan-Aleutian Subduction Zone. NOAA Technical Memorandum ERL PMEL-114, Pacific Marine Environmental Laboratory, USA.
  • TITOV, V.V., GONZALES, F.I., BERNARD, E.N., EBLE, M.C., MOFJELD, H.O., NEWMAN, J.C. & VENTURATO, A.J. 2005. Real-time tsunami forecasting: challenges and solutions. Natural Hazards 35, 35–41.
  • TODOROVSKA, M.I. & TRIFUNAC, M.D. 2001. Generation of tsunamis by a slowly spreading uplift of the sea floor. Soil Dynamics and Earthquake Engineering 21, 151–167.
  • TSUJI, Y. 1977 A study on the scattering wave induced by tsunami passing over a sea mount or rise. Kaiyou Kagaku (Ocean Science) 9, 45–53.
  • WANG, X. & LIU, P.L-F. 2005. A numerical investigation of Boumerdes-Zemmouri (Algeria) earthquake and tsunami. Computer Modeling in Engineering & Sciences 10, 171–183.
  • WANG, X. & LIU, P.L-F. 2006. Analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research 44, 147–154.
  • WARD, S.N. 1980. Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth 28, 441–474.
  • WEISZ, R. & WINTER, C. 2005. Tsunami, tides and run-up: a numerical study. In: PAPADOPOULOS, G.A. & SATAKE, K. (eds), Proceedings of the International Tsunami Symposium. 27–29 June, 2005, Chania, Greece.
  • WELLS D.L. & COPPERSMITH, K.J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84, 974–1002.
  • WESSEL, P. & SMITH, W.H.F. 1998. New, improved version of the Generic Mapping Tools released. EOS, Transactions American Geophysical Union 79, p. 579.
  • WOODSIDE, J., MASCLE, J. HUGUEN, C. & VOLKONSKALA, A. 2000. The Rhodes Basin, a Post-Miocene tectonic trough. Marine Geology 165, 1–12.
  • WOODSIDE, J.M., MASCLE, J., ZITTER, T. A.C., LIMONOV, A. F., ERGUN, M. & VOLKONSKAIA, A. and a shipboard scientists of the PRISMED II expedition 2002. The Florence Rise, the western bend of the Cyprus Arc. Marine Geology 185, 177–194.
  • YAGI, Y. & KIKUCHI, M. 2000. Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data. Geophysical Research Letters 27, 1969–1972.
  • YALÇINER, A.C. & PELINOVSKY, E. 2007. A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry. Ocean Engineering, doi:10.1016/j.oceaneng.2006.05.016.
  • YALÇINER, A.C., PELINOVSKY, E., OKAL, E. & SYNOLAKIS, C.E. 2003. Proceedings of the NATO Advanced Research Workshop on underwater ground failures on tsunami generation, modeling, risk and mitigation. NATO Science Series, İstanbul, Turkey.
  • YALÇINER, A.C., PELINOVSKY, E.,TALIPOVA, T., KURKIN, A., KOZELKOV, A. & ZAITSEV, A. 2004. Tsunami in the Black Sea: comparison of the historical, instrumental and numerical data. Journal of Geophysical Research 109, C12023, doi:10.1029/ 2003JC002113.
  • YAMASHITA, T. & SATO, R. 1974. Generation of tsunami by a fault model. Journal of Physics of the Earth 22, 415–440.
  • YOLSAL, S. 2008. Source Mechanism Parameters and Slip Distributions of Crete-Cyprus Arcs, Dead Sea Transform Fault Earthquakes and Historical Tsunami Simulations. Ph.D. Thesis, November 13, 2008, İstanbul Technical University, Graduate School of Institute of Science and Technology, İstanbul [unpublished].
  • YOLSAL, S. & TAYMAZ, T. 2004. Seismotectonics of the Cyprus Arc and Dead-Sea Fault Zone: Eastern Mediterranean. Session T14: Convergent Plate Tectonics of the Mediterranean, EOS Transactions AGU, 85 (47), Fall Meeting Supplements, Abstract T52B-06, Moscone Convention Center, San Fransisco, California, USA.
  • YOLSAL, S. & TAYMAZ, T. 2005. Potential source regions of earthquakes and tsunamis along the Hellenic and Cyprus arcs, eastern Mediterranean. International Symposium on the Geodynamics of Eastern Mediterranean: Active Tectonics of the Aegean Region, Abstract Book: Kadir Has University, İstanbul, Turkey, p. 240.
  • YOLSAL, S. & TAYMAZ, T. 2006. Source parameters and rupture histories of the earthquakes occured along the Cyprus- Hellenic arcs and Dead Sea Transform Fault. Ecole Doctorale Des Sciences De La Terre Institut de Physique du Globe de Pari -Congres Des Doctorants, 24–27 April 2006, Paris, France, p. 4.
  • YOLSAL, S., TAYMAZ, T. & YALÇINER, A.C. 2007a. Understanding tsunamis, potential source regions and tsunami prone mechanisms in the Eastern Mediterranean. In: TAYMAZ, T.,
  • YILMAZ, Y. & DILEK, Y. (eds), The Geodynamics of the Aegean and Anatolia. Geological Society, London, Special Publications 291, 201–230.
  • YOLSAL, S., TAYMAZ, T. & YALÇINER, A.C. 2007b. Source characteristics of earthquakes along the Hellenic and Cyprus Arcs and simulation of historical tsunamis, Geophysical Research Abstracts 9, European Geosciences Union General Assembly 2007, EGU-2007-A-02306, Vienna, Austria.
  • YOLSAL, S., TAYMAZ, T. & YALÇINER, A.C. 2008a. Earthquake source rupture characteristics along the Hellenic Arc and simulation of the AD 365 Crete earthquake and its tsunami. Geophysical Research Abstracts 10, EGU-2008-A-00065, European Geosciences Union General Assembly 2008, Vienna, Austria.
  • YOLSAL, S., TAYMAZ, T. & YALÇINER, A.C. 2008b. Source mechanisms of the recent Rhodes-Dodecanese Islands earthquakes and historical tsunami simulations in the eastern Mediterranean. Geophysical Research Abstracts 10, EGU-2008-A-00072, European Geosciences Union General Assembly 2008, Vienna, Austria.
  • ZAHIBO, N., PELINOVSKY, E., YALÇINER, A.C., KURKIN, A., KOSELKOV, A. & ZAITSEV, A. 2003. The 1867 Virgin island tsunami. Natural Hazards and Earth System Sciences 3, 367–376.
  • ZANCHI, A., CROSTA G.B. & DARKAL, A.N. 2002. Paleostress analyses in NW Syria: constraints on the Cenozoic evolution of the northwestern margin of the Arabian plate. Tectonophysics 357, 255–278.
APA YOLSAL ÇEVİKBİLEN S, TAYMAZ T (2010). Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. , 313 - 349.
Chicago YOLSAL ÇEVİKBİLEN SEDA,TAYMAZ TUNCAY Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. (2010): 313 - 349.
MLA YOLSAL ÇEVİKBİLEN SEDA,TAYMAZ TUNCAY Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. , 2010, ss.313 - 349.
AMA YOLSAL ÇEVİKBİLEN S,TAYMAZ T Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. . 2010; 313 - 349.
Vancouver YOLSAL ÇEVİKBİLEN S,TAYMAZ T Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. . 2010; 313 - 349.
IEEE YOLSAL ÇEVİKBİLEN S,TAYMAZ T "Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region." , ss.313 - 349, 2010.
ISNAD YOLSAL ÇEVİKBİLEN, SEDA - TAYMAZ, TUNCAY. "Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region". (2010), 313-349.
APA YOLSAL ÇEVİKBİLEN S, TAYMAZ T (2010). Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. Turkish Journal of Earth Sciences, 19(3), 313 - 349.
Chicago YOLSAL ÇEVİKBİLEN SEDA,TAYMAZ TUNCAY Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. Turkish Journal of Earth Sciences 19, no.3 (2010): 313 - 349.
MLA YOLSAL ÇEVİKBİLEN SEDA,TAYMAZ TUNCAY Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. Turkish Journal of Earth Sciences, vol.19, no.3, 2010, ss.313 - 349.
AMA YOLSAL ÇEVİKBİLEN S,TAYMAZ T Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. Turkish Journal of Earth Sciences. 2010; 19(3): 313 - 349.
Vancouver YOLSAL ÇEVİKBİLEN S,TAYMAZ T Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region. Turkish Journal of Earth Sciences. 2010; 19(3): 313 - 349.
IEEE YOLSAL ÇEVİKBİLEN S,TAYMAZ T "Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region." Turkish Journal of Earth Sciences, 19, ss.313 - 349, 2010.
ISNAD YOLSAL ÇEVİKBİLEN, SEDA - TAYMAZ, TUNCAY. "Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: case studies in the eastern Mediterranean region". Turkish Journal of Earth Sciences 19/3 (2010), 313-349.