Yıl: 2010 Cilt: 18 Sayı: 5 Sayfa Aralığı: 819 - 851 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Modeling and control of flow problems by adaptation-based linear parameter varying models

Öz:
In this paper a systematic modeling and control approach for flow problems is considered. A nonlinear Galerkin model is obtained from the partial differential equations (PDEs) describing the flow; and a Linear Parameter Varying (LPV) model is constructed to approximate the Galerkin model, where the parameter variation of the LPV model is controller by an adaptation mechanism. The LPV model is then treated as a surrogate on which the control design is carried out, where the parameter variations provide a range of uncertainty in which the control design must perform satisfactorily. It is shown that if certain conditions are met, then such a controller design will succeed when applied to the nonlinear Galerkin model. The ideas developed in the present paper are illustrated through a flow control example governed by the Navier-Stokes (NS) PDEs, where it is observed that a controller design based on the proposed approach is successful in achieving a desired regulation within the flow domain. In addition, it is seen that the LPV model can be used to predict certain robustness properties of the closed-loop system.
Anahtar Kelime:

Konular: Mühendislik, Elektrik ve Elektronik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. Gad-el Hak. Flow Control ˘G Passive, Active, and Reactive Flow Management. Cambridge University Press, New York, NY, 2000.
  • [2] T.R. Bewley. Flow control: new challenges for a new Renaissance. Progress in Aerospace Sciences, 37(1):21–58, 2001.
  • [3] R.D. Joslin. Aircraft laminar flow control. Annual review of fluid mechanics., 30:1–29, 1998.
  • [4] Jiezhi Wu, Xiyun Lu, A.G. Denny, M. Fan, and J.M. Wu. Post-stall flow control on an airfoil by local unsteady forcing. Journal of Fluid Mechanics, 371:21–58, 1998.
  • [5] O. M. Aamo, M. Krstic, and T. R. Bewley. Control of mixing by boundary feedback in 2d channel flow. Automatica, 39(9):1597–606–, 2003.
  • [6] L. Baramov, O. R. Tutty, and E. Rogers. h∞ control of non-periodic two-dimensional channel flow. IEEE Transactions on Control Systems Technology, 12(1):111–122, 2004.
  • [7] L. Cortelezzi, J. L. Speyer, K. H. Lee, and J. Kim. Robust reduced-order control of turbulent channel flows via distributed sensors and actuators. In Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998.
  • [8] M. Hogberg, T. R. Bewley, and D. S. Henningson. Linear feedback control and estimation of transition in plane channel flow. Journal of Fluid Mechanics, 481:149–175, 2001.
  • [9] J. Kim. Control of turbulent boundary layers. Physics of Fluids, 15:1093, 2003.
  • [10] A. Banaszuk, K. B. Ariyur, M. Krstic, and C. A. Jacobson. An adaptive algorithm for control of combustion instability. Automatica, 40(11):1965–72–, 2004.
  • [11] K. Cohen, S. Siegel, T. McLaughlin, E. Gillies, and J. Myatt. Closed-loop approaches to control of a wake flow modeled by the Ginzburg-Landau equation. Computers & Fluids, 34(8):927–49–, 2005.
  • [12] B. R. Noack and H. Eckelmann. A global stability analysis of the steady and periodic cylinder wake. Journal of Fluid Mechanics, 270:297–330, 1994.
  • [13] B. R. Noack, K. Afanasiev, M. Morzynski, G. Tadmor, and F. Thiele. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. Journal of Fluid Mechanics, 497:335–63, 2003.
  • [14] B. R. Noack, P. Papas, and P. A. Monketwitz. The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. Journal of Fluid Mechanics, 523:339–65, 2005.
  • [15] C. W. Rowley, T. Colonius, and R. M. Murray. Model reduction for compressible flows using POD and Galerkin projection. Physica D, 189(1-2):115–29, 2004.
  • [16] C. W. Rowley and J. E. Marsden. Reconstruction equations and the karhunen-loeve expansion for systems with symmetry. Physica D, 142(1-2):1–19, 2000.
  • [17] K. Fitzpatrick, Y. Feng, R. Lind, A. J. Kurdila, and D. W. Mikolaitis. Flow control in a driven cavity incorporating excitation phase differential. Journal of Guidance, Control, and Dynamics, 28(1):63–70, 2005.
  • [18] M. Samimy, M. Debiasi, E. Caraballo, A. Serrani, X. Yuan, J. Little, and J. H. Myatt. Feedback control of subsonic cavity flows using reduced-order models. Journal of Fluid Mechanics, 579:315–346, 2007.
  • [19] E. Caraballo, J. Little, M. Debiasi, and M. Samimy. Development and implementation of an experimental based reduced-order model for feedback control of subsonic cavity flows. Journal of Fluids Engineering, 129:813–824, 2007.
  • [20] W. R. Graham, J. Peraire, and K. Y. Tang. Optimal control of vortex shedding using low-order models. i - open-loop model development. International Journal for Numerical Methods in Engineering, 44:945–972, 1999.
  • [21] S. N. Singh, J. H. Myatt, G. A. Addington, S. Banda, and J. K. Hall. Optimal feedback control of vortex shedding using proper orthogonal decomposition models. Transactions of the ASME. Journal of Fluids Engineering, 123(3):612–618, 2001.
  • [22] K. Seiler, Z.H. Fan, K. Fluri, and D.J. Harrison. Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip. Analytical Chemistry, 66(20):3485–3491, 1994.
  • [23] R. Oleschuk, K. Westra, D.J. Harrison, A. Edmonton, and A. Microelectronic. Electrokinetic control of fluid flow in native poly (dimethylsiloxane) capillary electrophoresis devices. Electrophoresis, 21:107–115, 2000.
  • [24] N. Smaoui. Boundary and distributed control of the viscous Burgers equation. Journal of Computational and Applied Mathematics, 182(1):91–104, 2005.
  • [25] M. Hinze and K. Kunisch. Second order methods for boundary control of the instationary Navier-Stokes system. Zeitschrift fur Angewandte Mathematik und Mechanik, 84(3):171–87, 2004.
  • [26] T. Kobayashi and M. Oya. Nonlinear boundary control of coupled Burgers’ equations. Control and Cybernetics, 32(2):245–58, 2003.
  • [27] H. M. Park and M. W. Lee. Boundary control of the Navier-Stokes equation by empirical reduction of modes. Computer Methods in Applied Mechanics and Engineering, 188(1-3):165–86, 2000.
  • [28] M. Krstic. On global stabilization of Burgers’ equation by boundary control. Systems & Control Letters, 37(3):123– 41, 1999.
  • [29] P. Holmes, J.L. Lumley, and G. Berkooz. Turbulence, Coherent Structures, Dynamical System, and Symmetry. Cambridge University Press, Cambridge, 1996.
  • [30] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly of Applied Math., XLV(3):561–590, 1987.
  • [31] R Chris Camphouse. Boundary feedback control using Proper Orthogonal Decomposition models. Journal of Guidance, Control, and Dynamics, 28:931–938, 2005.
  • [32] R. C. Camphouse. Actuator modes for reduced order modeling and boundary feedback control. Accepted to Automatica, 2007.
  • [33] M. O. Efe and H. Ozbay. Low dimensional modelling and Dirichlet boundary controller design for Burgers equation. International Journal of Control, 77(10):895–906, July 2004.
  • [34] C. Kasnakoglu, A. Serrani, and M. O. Efe. Control input separation by actuation mode expansion for flow control problems. International Journal of Control, 81(9):1475–1492, 2008. DOI: 10.1080/00207170701867857.
  • [35] M.V. Kothare, B. Mettler, M. Morari, P. Bendotti, and C.M. Falinower. Linear parameter varying model predictive contr for steam generator level control. Computers and Chemical Engineering, 21:861–866, 1997.
  • [36] B.S. Hong, A. Ray, and V. Yang. Wide-range robust control of combustion instability. Combustion and Flame, 128(3):242–258, 2002.
  • [37] G.J. Balas. Linear, parameter-varying control and its application to a turbofan engine. International Journal of Robust and Nonlinear Control, 12(9):763–796, 2002.
  • [38] L. Giarr´e, D. Bauso, P. Falugi, and B. Bamieh. LPV model identification for gain scheduling control: An application to rotating stall and surge control problem. Control Engineering Practice, 14(4):351–361, 2006.
  • [39] K. Fitzpatrick, Y. Feng, R. Lind, and A.J. Kurdila. Flow Control in a Driven Cavity Incorporating Excitation Phase Differential. Journal of Guidance, Control, and Dynamics, 28(1), 2005.
  • [40] R. Lind. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. Journal of Guidance, Control, and Dynamics, 25(4):733–739, 2002.
  • [41] T. Sugiyama and K. Uchida. Gain-scheduled velocity and force controllers for electrohydraulic servo system. Electrical Engineering in Japan, 146(3):65–73, 2004.
  • [42] M. Krstic, P.V. Kokotovic, and I. Kanellakopoulos. Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc. New York, NY, USA, 1995.
  • [43] K.J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1994.
  • [44] KS Narendra and AM Annaswamy. Stable adaptive systems. Prentice Hall Information and System Sciences Series, 1989.
  • [45] J.J.E. Slotine and W. Li. Applied nonlinear control. Prentice Hall Englewood Cliffs, NJ, 1991.
  • [46] C.P.A. Ioannou and J. Sun. Robust Adaptive Control. Prentice-Hall, Upper Saddle River, NJ, 1996.
  • [47] C. Kasnakoglu, E. Caraballo, A. Serrani, and M. Samimy. Control input separation methods applied to cavity flow. In 27th American Control Conference, Seattle, Washington, USA, 2008.
  • [48] E. Caraballo, C. Kasnakoglu, A. Serrani, and M. Samimy. Control input separation methods for reduced-order model-based feedback flow control. AIAA Journal, 46(9):2306˘ G–2322, 2008.
  • [49] K. Zhou, J.C. Doyle, and K. Glover. Robust and optimal control. Prentice Hall Upper Saddle River, NJ, 1996.
  • [50] M. Chilali and P. Gahinet. H-infinity design with pole placement constraints: an LMIapproach. IEEE Transactions on Automatic Control, 41(3):358–367, 1996.
  • [51] P. Apkarian, P. Gahinet, and G. Becker. Self-Scheduled H-Infinity Control of Linear Parameter-Varying Systems-a Design Example. Automatica, 31(9):1251–1261, 1995.
  • [52] D. Engwirda. An unstructured mesh navier-stokes solver. Master’s thesis, School of Engineering, University of Sydney, 2005.
  • [53] B.R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke, M. Morzynski, P. Comte, and G. Tadmor. A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn., 33(2):103–148, 2008.
  • [54] B.R. Noack, M. Schlegel, M. Morzynski, and G. Tadmor. System reduction strategy for galerkin models of fluid flows. Intl. J. Numer. Meth. Fluids, 63(2), 2010.
  • [55] D.M. Luchtenburg, B. Gunter, R. Noack, B.R.and King, and G. Tadmor. A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech., 623:283–316, 2009.
  • [56] M. Pastoor, L. Henning, B.R. Noack, R. King, and G. Tadmor. Feedback shear layer control for bluff body drag reduction. Journal of Fluid Mechanics, 608:161–196, 2008.
  • [57] A. Isidori. Nonlinear Control Systems II. Springer, London, UK, 1999.
APA Kasnakoğlu C (2010). Modeling and control of flow problems by adaptation-based linear parameter varying models. , 819 - 851.
Chicago Kasnakoğlu Coşku Modeling and control of flow problems by adaptation-based linear parameter varying models. (2010): 819 - 851.
MLA Kasnakoğlu Coşku Modeling and control of flow problems by adaptation-based linear parameter varying models. , 2010, ss.819 - 851.
AMA Kasnakoğlu C Modeling and control of flow problems by adaptation-based linear parameter varying models. . 2010; 819 - 851.
Vancouver Kasnakoğlu C Modeling and control of flow problems by adaptation-based linear parameter varying models. . 2010; 819 - 851.
IEEE Kasnakoğlu C "Modeling and control of flow problems by adaptation-based linear parameter varying models." , ss.819 - 851, 2010.
ISNAD Kasnakoğlu, Coşku. "Modeling and control of flow problems by adaptation-based linear parameter varying models". (2010), 819-851.
APA Kasnakoğlu C (2010). Modeling and control of flow problems by adaptation-based linear parameter varying models. Turkish Journal of Electrical Engineering and Computer Sciences, 18(5), 819 - 851.
Chicago Kasnakoğlu Coşku Modeling and control of flow problems by adaptation-based linear parameter varying models. Turkish Journal of Electrical Engineering and Computer Sciences 18, no.5 (2010): 819 - 851.
MLA Kasnakoğlu Coşku Modeling and control of flow problems by adaptation-based linear parameter varying models. Turkish Journal of Electrical Engineering and Computer Sciences, vol.18, no.5, 2010, ss.819 - 851.
AMA Kasnakoğlu C Modeling and control of flow problems by adaptation-based linear parameter varying models. Turkish Journal of Electrical Engineering and Computer Sciences. 2010; 18(5): 819 - 851.
Vancouver Kasnakoğlu C Modeling and control of flow problems by adaptation-based linear parameter varying models. Turkish Journal of Electrical Engineering and Computer Sciences. 2010; 18(5): 819 - 851.
IEEE Kasnakoğlu C "Modeling and control of flow problems by adaptation-based linear parameter varying models." Turkish Journal of Electrical Engineering and Computer Sciences, 18, ss.819 - 851, 2010.
ISNAD Kasnakoğlu, Coşku. "Modeling and control of flow problems by adaptation-based linear parameter varying models". Turkish Journal of Electrical Engineering and Computer Sciences 18/5 (2010), 819-851.