Yıl: 2022 Cilt: 11 Sayı: 1 Sayfa Aralığı: 136 - 141 Metin Dili: İngilizce DOI: 10.46810/tdfd.1057096 İndeks Tarihi: 06-01-2023

Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills

Öz:
Orthopedic drills are currently used for various operations in surgical fields such as orthopedics, ear, nose, and throat surgery. The path that orthopedic drills travel through the tissue is controlled manually by surgeons, and manual control leads to the risk of damaging areas such as nerves and tissues. In our study, an innovative approach is presented against existing drill designs and breakthrough detection problems. In the proposed model, the change in the load torque and the change in friction force caused by the tissue change in the drilling path are considered as a disturbance effect, and a disturbance observer has been developed that allows these disturbances to be observed. Observation of the disturbance effects allows the perception of the hardness of tissue change during drilling since it gives the change of load torque changes and friction coefficient, which cannot be measured under normal operation. The performance of the proposed approach has been proven by simulation study.
Anahtar Kelime: Disturbance Observer Orthopedic Drill Bone Drilling

Ortopedik Matkaplar İçin Bozucu Gözlemci Tabanlı Kemik Doku Değişim Tahmin Yaklaşımı Benzetimi

Öz:
Günümüzde ortopedi, kulak burun boğaz gibi cerrahi alanlarda çeşitli operasyonlardaortopedik matkaplar kullanılmaktadır. Ortopedik matkapların doku içerisindeki kat ettiği yol manuel olarak cerrahlar tarafından kontrol edilmektedir ve manuel kontrol sinir, doku gibi bölgelerde hasar oluşturma riskine yol açmaktadır. Çalışmamızda mevcut matkap tasarımlarına ve sorunlarına karşı yenilikçi bir model sunulmaktadır. Önerilen modelde yük torqueindeki değişim ve matkap ucundaki doku değişikliğinden kaynaklanan sürtünme kuvveti değişimi bozucu etki olarak ele alınmış, bu bozucu etkilerin gözlemlenmesine olanak sağlayan bir bozucu gözlemci geliştirilmiştir. Bozucu etkilerinin gözlemlenmesi, normal şartlarda ölçülemeyen yük torque değişimlerinin ve sürtünme katsayısının değişimini verdiğinden dolayı, delme esnasında doku değişiminin algılanmasına olanak sağlamaktadır. Önerilen yöntemi başarımı benzetim çalışmaları ile kanıtlanmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Bertollo N, Robert W. Drilling of Bone: Practicality, Limitations and Complications Associated with Surgical Drill-Bits. Biomech. Appl., 2012. https://doi.org/10.5772/20931.
  • [2] Gönen E. Minimally invasive surgical techniques for the treatment of the shaft fractures of the long bones. Türk Ortop ve Travmatoloji Birliği Derneği Derg 2012;11:78–88. https://doi.org/10.5606/totbid.dergisi.2012.11.
  • [3] Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate osteosynthesis: Does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma 1999. https://doi.org/10.1097/00005131-199908000- 00002.
  • [4] Torun Y, Öztürk A. A New Breakthrough Detection Method for Bone Drilling in Robotic Orthopedic Surgery with Closed-Loop Control Approach. Ann Biomed Eng 2020;48. https://doi.org/10.1007/s10439-019-02444-5.
  • [5] Modi RA, Nayak RP. Detection of Breakthrough During Bone-Drilling in Orthopaedic Surgery 2014;1:794–8.
  • [6] Torun Y, Ozturk A, Hatipoglu N, Oztemur Z. Detection of Bone Excretion with Current Sensor in Robotic Surgery. UBMK 2018 - 3rd Int. Conf. Comput. Sci. Eng., 2018. https://doi.org/10.1109/UBMK.2018.8566443.
  • [7] Öztürk A. Robotik cerrahi matkaplarda güç analizi ile matkap ucu çıkış tespiti. Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, 2019.
  • [8] Torun Y, Pazarci O, Ozturk A. Current Approaches to Bone-Drilling Procedures with Orthopedic Drills. Cyprus J Med Sci 2020;5:93–8. https://doi.org/10.5152/cjms.2020.1242.
  • [9] Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech 2012;27. https://doi.org/10.1016/j.clinbiomech.2011.10.010.
  • [10] Praamsma M, Carnahan H, Backstein D, Veillette CJH, Gonzalez D, Dubrowski A. Drilling sounds are used by surgeons and intermediate residents, but not novice orthopedic trainees, to guide drilling motions. Can J Surg 2008.
  • [11] Ho D, Li T, Meng QH. Bone Drilling Breakthrough Detection via Energy-Based Signal. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2018- July, 2018. https://doi.org/10.1109/EMBC.2018.8512621.
  • [12] Zheng G, Nolte LP. Computer-Assisted Orthopedic Surgery: Current State and Future Perspective. Front Surg 2015;2. https://doi.org/10.3389/fsurg.2015.00066.
  • [13] Torun Y, Pazarci Ö. Parametric Power Spectral Density Estimation-Based Breakthrough Detection for Orthopedic Bone Drilling with Acoustic Emission Signal Analysis. Acoust Aust 2020;48. https://doi.org/10.1007/s40857-020-00182-6.
  • [14] Torun Y, Ozturk A, Hatipoglu N, Oztemur Z. Breakthrough detection for orthopedic bone drilling via power spectral density estimation of acoustic emission. 2018 Electr Electron Comput Sci Biomed Eng Meet EBBT 2018 2018:1–5. https://doi.org/10.1109/EBBT.2018.8391464.
  • [15] Ying Z, Shu L, Sugita N. Autonomous Penetration Perception for Bone Cutting during Laminectomy. 2020 8th IEEE RAS/EMBS Int. Conf. Biomed. Tr. Doğa ve Fen Derg. Cilt 11, Sayı 1, Sayfa 136-141, 2022 Tr. J. Nature Sci. Volume 11, Issue 1, Page 136-141, 2022 141 Robot. Biomechatronics, IEEE; 2020, p. 1043–8. https://doi.org/10.1109/BioRob49111.2020.922437 5.
  • [16] Seibold M, Maurer S, Hoch A, Zingg P, Farshad M, Navab N, et al. Real-time acoustic sensing and artificial intelligence for error prevention in orthopedic surgery. Sci Rep 2021;11:3993. https://doi.org/10.1038/s41598-021-83506-4.
  • [17] Osa T, Abawi CF, Sugita N, Chikuda H, Sugita S, Tanaka T, et al. Hand-Held Bone Cutting Tool with Autonomous Penetration Detection for Spinal Surgery. IEEE/ASME Trans Mechatronics 2015;20:3018–27. https://doi.org/10.1109/TMECH.2015.2410287.
  • [18] Hingmire A, Pimple BB. Simulation and Analysis Studies of Speed Control of Brushless DC Motor Using Hall Sensors. 2018 Int. Conf. Smart Electr. Drives Power Syst., 2018, p. 384–7. https://doi.org/10.1109/ICSEDPS.2018.8536062.
  • [19] Safi SK. Analysis and simulation of the high-speed torque performance of brushless DC motor drives. IEE Proc - Electr Power Appl 1995;142. https://doi.org/10.1049/ip-epa:19951808.
  • [20] Aydoğdu Ö. Fırçasız doğru akım motorlarının genetik tabanlı bulanık denetleyici ile sensörsüz kontrolü. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2006.
  • [21] Li X. Model-Based Design of Brushless Dc Motor Control and Motion Control Modelling for Robocup Ssl. 2015.
  • [22] Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 2000;47:932–8. https://doi.org/10.1109/41.857974.
  • [23] Alkaya A, Eker I. Luenberger observer-based sensor fault detection: Online application to DC motor. Turkish J Electr Eng Comput Sci 2014;22. https://doi.org/10.3906/elk-1203-84.
  • [24] Mohammadi A, Tavakoli M, Marquez HJ, Hashemzadeh F. Nonlinear disturbance observer design for robotic manipulators. Control Eng Pract 2013;21. https://doi.org/10.1016/j.conengprac.2012.10.008.
  • [25] Wen X. Enhanced disturbance-observer-based control for a class of time-delay system with uncertain sinusoidal disturbances. Math Probl Eng 2013;2013. https://doi.org/10.1155/2013/805687.
  • [26] Radke A, Gao Z. A survey of state and disturbance observers for practitioners. Proc. Am. Control Conf., vol. 2006, 2006. https://doi.org/10.1109/acc.2006.1657545.
  • [27] Lee SC, Ahn HS. Sensorless torque estimation using adaptive Kalman filter and disturbance estimator. Proc. 2010 IEEE/ASME Int. Conf. Mechatron. Embed. Syst. Appl. MESA 2010, 2010. https://doi.org/10.1109/MESA.2010.5552094.
  • [28] Kouhei O, Shibata M, Murakami T. Motion control for advanced mechatronics. IEEE/ASME Trans Mechatronics 1996;1. https://doi.org/10.1109/3516.491410.
  • [29] Eriksson AR, Albrektsson T, Albrektsson B. Heat caused by drilling cortical bone: Temperature measured in vivo in patients and animals. Acta Orthop 1984;55. https://doi.org/10.3109/17453678408992410.
  • [30] Bachus KN, Rondina MT, Hutchinson DT. The effects of drilling force on cortical temperatures and their duration: An in vitro study. Med Eng Phys 2000;22. https://doi.org/10.1016/S1350- 4533(01)00016-9.
  • [31] Torun Y, Malatyalı S. Power Analysis of Robotic Medical Drill With Different Control Approaches. Cumhur Sci J 2020;41:527–33. https://doi.org/10.17776/csj.661666.
  • [32] Amewoui F, Le Coz G, Bonnet AS, Moufki A. Bone drilling: an identification of heat sources. Comput Methods Biomech Biomed Engin 2020;23. https://doi.org/10.1080/10255842.2020.1813418.
  • [33] Alam K, Piya S, Al-Ghaithi A, Silberschmidth V. Experimental investigation on the effect of drill quality on the performance of bone drilling. Biomed Tech 2020;65. https://doi.org/10.1515/bmt-2018- 0184.
  • [34] Boiadjiev G, Chavdarov I, Delchev K, Boiadjiev T, Kastelov R, Zagurki K. Development of Hand-Held Surgical Robot ODRO-2 for Automatic Bone Drilling. J Theor Appl Mech 2017;47:12–22. https://doi.org/10.1515/jtam-2017-0017.
APA TORUN Y (2022). Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. , 136 - 141. 10.46810/tdfd.1057096
Chicago TORUN YUNIS Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. (2022): 136 - 141. 10.46810/tdfd.1057096
MLA TORUN YUNIS Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. , 2022, ss.136 - 141. 10.46810/tdfd.1057096
AMA TORUN Y Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. . 2022; 136 - 141. 10.46810/tdfd.1057096
Vancouver TORUN Y Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. . 2022; 136 - 141. 10.46810/tdfd.1057096
IEEE TORUN Y "Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills." , ss.136 - 141, 2022. 10.46810/tdfd.1057096
ISNAD TORUN, YUNIS. "Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills". (2022), 136-141. https://doi.org/10.46810/tdfd.1057096
APA TORUN Y (2022). Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. Türk Doğa ve Fen Dergisi, 11(1), 136 - 141. 10.46810/tdfd.1057096
Chicago TORUN YUNIS Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. Türk Doğa ve Fen Dergisi 11, no.1 (2022): 136 - 141. 10.46810/tdfd.1057096
MLA TORUN YUNIS Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. Türk Doğa ve Fen Dergisi, vol.11, no.1, 2022, ss.136 - 141. 10.46810/tdfd.1057096
AMA TORUN Y Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. Türk Doğa ve Fen Dergisi. 2022; 11(1): 136 - 141. 10.46810/tdfd.1057096
Vancouver TORUN Y Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills. Türk Doğa ve Fen Dergisi. 2022; 11(1): 136 - 141. 10.46810/tdfd.1057096
IEEE TORUN Y "Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills." Türk Doğa ve Fen Dergisi, 11, ss.136 - 141, 2022. 10.46810/tdfd.1057096
ISNAD TORUN, YUNIS. "Simulation of Disturbance Observer-Based Bone Tissue Change Prediction Approach for Orthopedic Drills". Türk Doğa ve Fen Dergisi 11/1 (2022), 136-141. https://doi.org/10.46810/tdfd.1057096