Yıl: 2022 Cilt: 42 Sayı: 1 Sayfa Aralığı: 65 - 74 Metin Dili: İngilizce DOI: 10.47480/isibted.1107445 İndeks Tarihi: 07-09-2022

ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS

Öz:
With the enhancements in nanotechnology, electronic devices shrank in size which led to a necessity to develop efficient thermal management strategies. These small electronic devices could be thermally managed through passive systems provided that effective materials are developed. Here, we use a layer of activated carbon on top of anodized aluminum heat sinks to utilize the sorption cycle of atmospheric water to create a desorption induced evaporative cooling effect. The material properties of the activated carbon lead to enhanced cooling by radiation and desorption, while the geometry of the heat sinks ensure surface area maximization. We develop a numerical simulation platform to determine the optimum geometry and the optimal activated carbon coating mass. Our results show that as the fin diameter and spacing shrink, and as the activated carbon mass increases within the considered range (0-100 mg), effective cooling of the chip could be achieved. We further employ our simulations to decouple the effects of desorption, radiation, and convection. Our analyses reveal that desorption only plays a vital role during the initial periods of operation, while cooling due to radiation and convection leads to an ≈20% increase in the overall steady-state heat transfer coefficient. This study goes beyond introducing a passive thermal management strategy for small electronic chips by providing a link between mass diffusion and thermal processes for effective transient operation of thermal devices.
Anahtar Kelime: Heat sink. Passive device Activated carbon Thermal management

AKTİF KARBON KAPLAMALI SOĞUTUCULARIN ANALİZ VE OPTİMİZASYONU

Öz:
Nanoteknolojideki son gelişmeler, elektronik cihazların boyutlarının küçülmesine yol açtı ve bu durum randımanlı ısıl yönetim stratejilerinin geliştirilmesini bir zorunluluk haline getirdi. Küçülen bu cihazların ısıl yönetimlerinin geliştirilecek olan verimli pasif cihazlar vasıtasıyla etkili bir şekilde gerçekleştirilebileceği öngörülmektedir. Bu çalışmada, atmosferdeki su buharının sorpsiyon döngüsü kullanılarak yapay bir buharlaşmalı soğutma etkisi oluşturulması amacıyla anotlanmış alüminyum soğutucuların üzerine bir aktif karbon tabakası kaplanmıştır. Aktif karbonun malzeme özellikleri radyasyon ve desorpsiyon ile daha fazla soğutmaya olanak sağlarken, ısı emicilerinin geometrileri yüzey alanının en üst seviyeye çıkarılmasını sağlamaktadır. İdeal soğutucu geometrisini ve optimum aktif karbon kaplama kütlesini belirlemek için sayısal benzetim platformları geliştirilmiş ve kullanılmıştır. Analiz sonuçlarına göre kanatçık çapı ve aralığı küçüldükçe, ve aktif karbon kütlesi çalışılan aralıkta (0-100 mg) arttıkça, elektronik çipin etkili bir şekilde soğutulabildiği görülmektedir.Desorpsiyon, radyasyon ve konveksiyonun etkilerini ayrı ayrı çalışabilmek için belirli girdilerle benzetme algoritmaları tekrar kullanılmıştır. Analizlerimiz, desorpsiyonun sadece erken fazlarda önemli bir rol oynadığını, radyasyon ve konveksiyon temelli soğutmanınsa denge durumundaki toplam ısı transfer katsayısında ortalama %20’lik bir artışa yol açtığını ortaya koymaktadır. Bu çalışma küçük elektronik cihazların pasif yöntemlerle soğutulmalarına yönelik stratejiler geliştirmenin ötesinde, ısıl cihazların zamana bağlı etkili bir şekilde çalışmaları için kütle difüzyonu ve ısıl prosesler arasında bir bağlantı kurmaktadır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Attinger, D., C. Frankiewicz, A. R. Betz, T. M. Schutzius, R. Ganguly, A. Das, C.-J. Kim and C. M. Megaridis, 2014, Surface engineering for phase change heat transfer: A review, MRS Energy & Sustainability, 1.
  • Bergman, T. L., F. P. Incropera, D. P. DeWitt and A. S. Lavine, 2011, Fundamentals of heat and mass transfer, John Wiley & Sons.
  • Birbarah, P., T. Gebrael, T. Foulkes, A. Stillwell, A. Moore, R. Pilawa-Podgurski and N. Miljkovic, 2020, Water immersion cooling of high power density electronics, International journal of heat and mass transfer, 147: 118918.
  • Cho, H. J., D. J. Preston, Y. Zhu and E. N. Wang, 2016, Nanoengineered materials for liquid–vapour phase- change heat transfer, Nature Reviews Materials, 2(2): 1- 17.
  • Christen, D., M. Stojadinovic and J. Biela, 2016, Energy efficient heat sink design: natural versus forced convection cooling, IEEE Transactions on Power Electronics, 32(11): 8693-8704.
  • Do, D. and H. Do, 2000, A model for water adsorption in activated carbon, Carbon, 38(5): 767-773.
  • Fathieh, F., M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang and O. M. Yaghi, 2018, Practical water production from desert air, Science advances, 4(6): eaat3198.
  • González-García, P., 2018, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renewable and Sustainable Energy Reviews, 82: 1393- 1414.
  • Günay, A. A., S. Harish, M. Fuchi, I. Kinefuchi, Y. Lee and J. Shiomi, 2022, Metal–organic framework coated porous structures for enhanced thermoelectric performance, Energy conversion and management, 255: 115289.
  • Günay, A. A., M.-K. Kim, X. Yan, N. Miljkovic and S. Sett, 2021, Droplet evaporation dynamics on microstructured biphilic, hydrophobic, and smooth surfaces, Experiments in Fluids, 62(7): 1-14.
  • Günay, A. A., S. Sett, J. Oh and N. Miljkovic, 2017, Steady method for the analysis of evaporation dynamics, Langmuir, 33(43): 12007-12015.
  • Gustavsen, A. and P. Berdahl, 2003, Spectral emissivity of anodized aluminum and the thermal transmittance of aluminum window frames, Nordic Journal of Building Physics, 3(1970): 1-12.
  • Hahn, G., 2010. Status of selective emitter technology. 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion.
  • Henninger, S., F. Schmidt and H.-M. Henning, 2010, Water adsorption characteristics of novel materials for heat transformation applications, Applied Thermal Engineering, 30(13): 1692-1702.
  • Hetsroni, G., A. Mosyak, Z. Segal and G. Ziskind, 2002, A uniform temperature heat sink for cooling of electronic devices, International journal of heat and mass transfer, 45(16): 3275-3286.
  • Hossain, M. M. and M. Gu, 2016, Radiative cooling: principles, progress, and potentials, Advanced Science, 3(7): 1500360.
  • Hu, M., B. Zhao, X. Ao, Y. Su and G. Pei, 2018, Numerical study and experimental validation of a combined diurnal solar heating and nocturnal radiative cooling collector, Applied Thermal Engineering, 145: 1- 13.
  • Jang, Y., J. Jo, Y.-M. Choi, I. Kim, S.-H. Lee, D. Kim and S. M. Yoon, 2013, Activated carbon nanocomposite electrodes for high performance supercapacitors, Electrochimica Acta, 102: 240-245.
  • Juárez-Galán, J., A. Silvestre-Albero, J. Silvestre-Albero and F. Rodríguez-Reinoso, 2009, Synthesis of activated carbon with highly developed “mesoporosity”, Microporous and Mesoporous Materials, 117(1-2): 519- 521.
  • Kabeel, A. E., Y. A. F. El-Samadony and M. H. Khiera, 2017, Performance evaluation of energy efficient evaporatively air-cooled chiller, Applied Thermal Engineering, 122: 204-213.
  • Karamanis, D., E. Vardoulakis, E. Kyritsi and N. Ökte, 2012, Surface solar cooling through water vapor desorption from photo-responsive sepiolite nanocomposites, Energy conversion and management, 63: 118-122.
  • Kim, H., H. J. Cho, S. Narayanan, S. Yang, H. Furukawa, S. Schiffres, X. Li, Y.-B. Zhang, J. Jiang and O. M. Yaghi, 2016, Characterization of adsorption enthalpy of novel water-stable zeolites and metal-organic frameworks, Scientific Reports, 6(1): 1-8.
  • Kim, H., S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi and E. N. Wang, 2018, Adsorption-based atmospheric water harvesting device for arid climates, Nature Communications, 9(1): 1-8.
  • Kim, H., S. Yang, S. R. Rao, S. Narayanan, E. A. Kapustin, H. Furukawa, A. S. Umans, O. M. Yaghi and E. N. Wang, 2017, Water harvesting from air with metal- organic frameworks powered by natural sunlight, Science, 356(6336): 430-434.
  • Li, J., W. Fu, B. Zhang, G. Zhu and N. Miljkovic, 2019, Ultrascalable three-tier hierarchical nanoengineered surfaces for optimized boiling, ACS Nano, 13(12): 14080-14093.
  • Moore, A. L. and L. Shi, 2014, Emerging challenges and materials for thermal management of electronics, Materials today, 17(4): 163-174.
  • Ng, K. C., H. Chua, C. Chung, C. Loke, T. Kashiwagi, A. Akisawa and B. B. Saha, 2001, Experimental investigation of the silica gel–water adsorption isotherm characteristics, Applied Thermal Engineering, 21(16): 1631-1642.
  • Nor, N. M., L. C. Lau, K. T. Lee and A. R. Mohamed, 2013, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review, Journal of Environmental Chemical Engineering, 1(4): 658-666.
  • Oh, J., P. Birbarah, T. Foulkes, S. L. Yin, M. Rentauskas, J. Neely, R. C. Pilawa-Podgurski and N. Miljkovic, 2017, Jumping-droplet electronics hot-spot cooling, Applied Physics Letters, 110(12): 123107.
  • Rezk, A., R. Al-Dadah, S. Mahmoud and A. Elsayed, 2012, Characterisation of metal organic frameworks for adsorption cooling, International journal of heat and mass transfer, 55(25-26): 7366-7374.
  • Rodríguez Mirasol, J., J. Bedia, T. Cordero and J. J. Rodríguez, 2005, Influence of water vapor on the adsorption of VOCs on Lignin Based activated carbons, Separation Science and Technology, 40(15): 3113-3135.
  • Shahriari, A., P. Birbarah, J. Oh, N. Miljkovic and V. Bahadur, 2017, Electric field–based control and enhancement of boiling and condensation, Nanoscale and Microscale Thermophysical Engineering, 21(2): 102-121.
  • Sommer, J. L., 1997, High Conductivity, Low Cost Aluminum Composite for Thermal Management, Technical Research Associates Inc., Salt Lake City, UT.
  • Stebe, K. J. and S.-Y. Lin, 2001, Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis. Handbook of Surfaces and Interfaces of Materials, Elsevier: 55-106.
  • Stock, N. and S. Biswas, 2012, Synthesis of metal- organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites, Chemical reviews, 112(2): 933-969.
  • Subrenat, A. and P. Le Cloirec, 2003, Thermal behavior of activated carbon cloths heated by Joule effect, Journal of environmental engineering, 129(12): 1077-1084.
  • Uddin, K., M. Amirul Islam, S. Mitra, J.-b. Lee, K. Thu, B. B. Saha and S. Koyama, 2018, Specific heat capacities of carbon-based adsorbents for adsorption heat pump application, Applied Thermal Engineering, 129: 117- 126.
  • Verma, R., H. Nagendra, S. Kasthurirengan, N. Shivaprakash and U. Behera, 2019. Thermal conductivity studies on activated carbon based cryopanel. IOP Conference Series: Materials Science and Engineering, IOP Publishing.
  • Wang, C., L. Hua, H. Yan, B. Li, Y. Tu and R. Wang, 2020, A thermal management strategy for electronic devices based on moisture sorption-desorption processes, Joule, 4(2): 435-447.
  • Yang, X.-H., S.-C. Tan, Z.-Z. He and J. Liu, 2018, Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock, Energy conversion and management, 160: 467-476.
  • Yang, Y., G. Cui and C. Q. Lan, 2019, Developments in evaporative cooling and enhanced evaporative cooling- A review, Renewable and Sustainable Energy Reviews, 113: 109230.
  • Yoon, S. W., B. Petrov and K. Liu, 2015. Advanced wafer level technology: Enabling innovations in mobile, IoT and wearable electronics. 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), IEEE.
  • Yuan, Y., H. Zhang, F. Yang, N. Zhang and X. Cao, 2016, Inorganic composite sorbents for water vapor sorption: A research progress, Renewable and Sustainable Energy Reviews, 54: 761-776.
  • Zhou, Y., B. Ji, X. Yan, P. Jin, J. Li and N. Miljkovic, 2021, Asymmetric Bubble Formation at Rectangular Orifices, Langmuir, 37(14): 4302-4307.
  • Zhou, Z., X. Sun and P. Bermel, 2016. Radiative cooling for thermophotovoltaic systems. Infrared Remote Sensing and Instrumentation XXIV, International Society for Optics and Photonics.
  • Zhu, G., Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou and Z. L. Wang, 2013, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano letters, 13(2): 847-853.
APA Gunay A (2022). ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. , 65 - 74. 10.47480/isibted.1107445
Chicago Gunay Ahmet ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. (2022): 65 - 74. 10.47480/isibted.1107445
MLA Gunay Ahmet ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. , 2022, ss.65 - 74. 10.47480/isibted.1107445
AMA Gunay A ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. . 2022; 65 - 74. 10.47480/isibted.1107445
Vancouver Gunay A ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. . 2022; 65 - 74. 10.47480/isibted.1107445
IEEE Gunay A "ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS." , ss.65 - 74, 2022. 10.47480/isibted.1107445
ISNAD Gunay, Ahmet. "ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS". (2022), 65-74. https://doi.org/10.47480/isibted.1107445
APA Gunay A (2022). ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi, 42(1), 65 - 74. 10.47480/isibted.1107445
Chicago Gunay Ahmet ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi 42, no.1 (2022): 65 - 74. 10.47480/isibted.1107445
MLA Gunay Ahmet ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi, vol.42, no.1, 2022, ss.65 - 74. 10.47480/isibted.1107445
AMA Gunay A ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi. 2022; 42(1): 65 - 74. 10.47480/isibted.1107445
Vancouver Gunay A ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi. 2022; 42(1): 65 - 74. 10.47480/isibted.1107445
IEEE Gunay A "ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS." Isı Bilimi ve Tekniği Dergisi, 42, ss.65 - 74, 2022. 10.47480/isibted.1107445
ISNAD Gunay, Ahmet. "ANALYSIS AND OPTIMIZATION OF ACTIVATED CARBON COATED HEAT SINKS". Isı Bilimi ve Tekniği Dergisi 42/1 (2022), 65-74. https://doi.org/10.47480/isibted.1107445