TY - JOUR TI - IMPLEMENTATION, VERIFICATION AND ASSESSMENT OF VORTEX CAPTURING CAPABILITIES OF k-kL TURBULENCE MODEL AB - This study presents the first results of a new turbulence model implementation in our compressible finite volume CFD solver. The k-kL turbulence model is one of the newest two-equation models, and it is based on the ideas of Rotta’s two-equation model. Various research groups progressively develop the model, and it is maturing rapidly. Reports suggest that the k-kL turbulence model provides superior results compared to the other two-equation turbulence models in specific problems. The improved solutions are observed mainly for the flows with high adverse pressure gradients, the blunt-body wakes and jet interactions. We have implemented the k-kL model (with the standard designation of k-kL-MEAH2015) in our solver, and we are testing it rigorously. This paper presents our results on standard turbulence test cases: subsonic flat plate and subsonic wall-mounted bump. The results compare well with the reference study previously presented and published by model developers. The design of the k-kL model prevents excessive production of turbulence and dissipation; hence it preserves vortices significantly better than the other two-equation models. The implemented model is also tested with a transonic fin trailing vortex case to support this statement. Results show that the k-kL model yields considerably better results than the SST turbulence model in cases including vortices. AU - Dikbaş, Erdem AU - Baran, Özgür Ugras DO - 10.47480/isibted.1107477 PY - 2022 JO - Isı Bilimi ve Tekniği Dergisi VL - 42 IS - 1 SN - 1300-3615 SP - 113 EP - 122 DB - TRDizin UR - http://search/yayin/detay/1086503 ER -