Yıl: 2022 Cilt: 9 Sayı: 1 Sayfa Aralığı: 433 - 452 Metin Dili: İngilizce DOI: 10.35193/bseufbd.1075723 İndeks Tarihi: 09-08-2022

Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline

Öz:
Inspired by the striking achievements of fluorine-containing heterocyclic compounds in pharmaceutical chemistry, in this study quantum chemical calculations were carried out on the midaflur compound, which has skeletal-muscle relaxant and central nervous system (CNS) depressant properties. First of all, the total energy (ΔETotal), enthalpy (ΔH), and Gibbs free energy (ΔG) values for both tautomeric structures of midaflur were calculated and it was determined which form was more stable and the rest of the study was continued on this structure. For the stable amino form, the HF method and B3LYP/B3PW91 DFT functionals with different basis sets were used in order to examine the geometric parameters. The results were found to be in good agreement with the experimental values given in the literature. Furthermore, FT-IR analysis, Mulliken population analysis, frontier molecular orbital (FMO) analysis, natural bond orbital (NBO) analysis, nonlinear optical (NLO) properties, and electrostatic surface properties were studied in detail. In another part of the study, the logPow (logarithm of the n-octanol/water partition coefficient) value, which is the numerical expression of the lipophilicity of a drug for entry into the CNS, was estimated for midaflur. For this purpose, the calculations were repeated for the water and n-octanol phases using the universal solvation model based on density (SMD) for all the methodologies used in this study, and the free energies of solvation were predicted. It was concluded that the predictive power of the computational methods increased in the order of HF < B3PW91 < B3LYP.
Anahtar Kelime: Midaflur NBO Mulliken charges DFT

Bir Florlu Aminoimidazolin Olan Midaflur'un Karşılaştırmalı Kuantum Kimyasal Analizi

Öz:
Flor içeren heterosiklik bileşiklerin farmasötik kimyadaki dikkat çekici başarılarından esinlenilen bu çalışmada, iskelet-kas gevşetici ve merkezi sinir sistemi (MSS) depresan özelliklerine sahip midaflur bileşiği üzerinde kuantum kimyasal hesaplamalar yapılmıştır.Öncelikle midaflur'un her iki tautomerik yapısı için toplam enerji (ΔETotal), entalpi (ΔH) ve Gibbs serbest enerji (ΔG) değerleri hesaplanarak hangi formun daha kararlı olduğu belirlendi ve çalışmaya bu yapı üzerinden devam edildi.Kararlı amino formuna ait geometrik parametreleri incelemek için HF yöntemi ve B3LYP/B3PW91 DFT fonksiyonelleri farklı temel setlerle kullanılmıştır.Sonuçların literatürde verilen deneysel değerlerle uyum içinde olduğu belirlenmiştir.Ayrıca FT-IR analizi, Mulliken popülasyon analizi, sınır moleküler orbital (FMO) analizi, doğal bağ orbital (NBO) analizi, doğrusal olmayan optik (NLO) özellikler ve elektrostatik yüzey özellikleri detaylı olarak incelenmiştir.Çalışmanın başka bir bölümünde, bir ilacın MSS'ye giriş için lipofilitesinin sayısal ifadesi olan logPow (n-oktanol/su partisyon katsayısının logaritması) değeri midaflur için tahmin edilmiştir.Bu amaçla, bu çalışmada kullanılan tüm metodolojiler için yoğunluğa dayalı evrensel solvasyon modeli (SMD) kullanılarak su ve n-oktanol fazları için hesaplamalar tekrarlanmış ve solvasyon serbest enerji değerleri tahmin edilmiştir. Hesaplamalı yöntemlerin tahmin gücünün HF < B3PW91 < B3LYP sırasına göre arttığı sonucuna varılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Dua, R., Shrivastava, S., Sonwane, S. K., & Srivastava, S. K. (2011). Pharmacological significance of synthetic heterocycles scaffold: a review. Advances in Biological Research, 5(3), 120-144.
  • Purser, S., Moore, P. R., Swallow, S., & Gouverneur, V. (2008). Fluorine in medicinal chemistry. Chemical Society Reviews, 37, 320–330.
  • Tri, N. N., Hailu, Y. M., Duong, L. V., & Nguyen, M. T. (2020). Influence of fluorination on energetic parameters of silole, phosphole, thiophene, oligomers of silole and related acenes.Journal of Fluorine Chemistry, 240, 109665.
  • Bogdanov, A. V., Zaripova, I. F., Voloshina, A. D., Sapunova, A. S., Kulik, N. V., Tsivunina, I. V., Dobrynin, A. B., & Mironov, V. F.(2019). Isatin derivatives bearing a fluorine atom. Part 1: Synthesis, hemotoxicity and antimicrobial activity evaluation of fluoro-benzylated water-soluble pyridinium isatin-3-acylhydrazones. Journal of Fluorine Chemistry, 227,109345.
  • Hong, F., Li, H., Zhu, D., Xia, Z., Zhang, H., Wang, H., & Zeng, Z. (2014). Piperidine and 3,3,4,4,5,5-hexafluoropiperidine as terminal groups: Syntheses and properties as new liquid crystals. Journal of Fluorine Chemistry, 168, 61–68.
  • Lipunova, G. N., Nosova, E. V., Charushin, V. N., & Chupakhin, O. N. (2016). Fluorine-containing indazoles: synthesis and biological activity. Journal of Fluorine Chemistry, 192, 1–21.
  • Uneyama, K., & Sasaki, K. (2009). Fluorinated heterocyclic compounds: synthesis, chemistry, and applications. Edited by Viacheslav A. Petrov, John Wiley & Sons, Inc. Publishers, New Jersey.
  • Uneyama, K. (2006). Fluorine in drug designs. Organofluorine Chemistry; Blackwell Publishing: Oxford, UK.
  • Inoue, M., Sumii, Y., & Shibata, N. (2020). Contribution of organofluorine compounds to pharmaceuticals. ACS Omega, 5, 10633−10640. Middleton, W. J., & Krespan, C. G. (1970). Fluorinated aminoimidazolines.Synthesis and determination of tautomeric structure. Journal of Organic Chemistry, 35, 1480-1485.
  • Guggenberger, L. J. (1973). The crystal structure of 4-amino-2,2,5,5-tetrakis(trifluoromethyl)-3-imidazoline. Acta Crystallographica Section B, B29, 2110-2114.
  • Arora, S. K.(1981). Structure of a complex of midaflur (a central nervous system depressant) and dimethyl sulfoxide. Acta Crystallographica Section B, B37, 2052-2055.
  • Levine, I. M., Jossmann, P. B.., Friend, D. G., & DeAngelis, V. (1968). Effect of 5-imino-2,2,4,4-tetrakis (trifluoromethyl) imidazolidine (EXP 338) on spasticity: A quantitative evaluation.Clinical Pharmacology & Therapeutics, 9(4), 448-455.
  • Clark, R., Lynes, T. E., Price, W. A., Smith, D. H., Woodward, J. K., Marvel, J. P., V.G. & Vernier, V. G. (1971). The pharmacology and toxicology of midaflur.Toxicology and Applied Pharmacology, 18, 917-943.
  • Borges, R. M., Colby, S. M., Das, S., Edison, A. S., Fiehn, O., Kind, T., Lee, J., Merrill, A. T., Merz, K. M. Jr., Metz, T. O., Nunez, J. R., Tantillo, D. J., Wang, L. P., Wang, S., & Renslow, R. S. (2021). Quantum chemistry calculations for metabolomics. Chemical Reviews, 121(10), 5633–5670.
  • Feizi-Dehnayebi, M., Dehghanian, E., & Mansouri-Torshizi, H. (2021). DNA/BSA binding affinity studies of new Pd (II) complex with S-S and N-N donor mixed ligands via experimental insight and molecular simulation: Preliminary antitumor activity, lipophilicity and DFT perspective. Journal of Molecular Liquids, 344(1), 117853.
  • Serdaroğlu, G., & Elik, M. (2018). A computational study predicting the chemical reactivity behavior of 1-substituted 9-ethyl-βCCM derivatives: DFT- based quantum chemical descriptors.Turkish Computational and Theoretical Chemistry, 2(1), 1-11.
  • Sayın, K., & Üngördü, A., (2019). Investigations of structural, spectral and electronic properties of enrofloxacin and boron complexes via quantum chemical calculation and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 220, 117102.
  • Serdaroğlu, G., & Ortiz, J. V. (2017). Ab initio calculations on some antiepileptic drugs such as phenytoin, phenobarbital, ethosuximide and carbamazepine.Structural Chemistry, 28, 957-964.
  • Üngördü, A., & Sayın, K. (2019). Quantum chemical calculations on sparfloxacin and boron complexes. Chemical Physics Letters, 733, 136677.
  • Feizi-Dehnayebi, M., Dehghanian, E., & Mansouri-Torshizi, H. (2021). Synthesis and characterization of Pd (II) antitumor complex, DFT calculation and DNA/BSA binding insight through the combined experimental and theoretical aspects.Journal of Molecular Structure, 1240, 130535.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J.V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L.,Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J., Gaussian 09, Rev.D.01, Gaussian, Inc., Wallingford CT, 2009.
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density functional theories.Journal of Chemical Physics, 98, 1372–1377.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical Review B, 37, 785–789.
  • Becke, A. D. (1993). Density functional thermochemistry. III. The role of exact exchange.Journal of Chemical Physics, 98: 5648–5652.
  • Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687.
  • Roothaan, C. C. J. (1951). New Developments in Molecular Orbital Theory. Reviews of Modern Physics, 23, 69-89.
  • Jamroz, M. H. Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004–2010.
  • Dennington, R., Keith, T., Millam, J., Gauss View, Version 5., Semichem Inc., Shawnee Mission, KS. 2009.
  • O’Boyle, N. M., Tenderholt, A. L., Langer, K. M. (2008). Cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29, 839-845.
  • Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113(18), 6378-6396.
  • Janeoo, S., Reenu, Saroa, A., Kumar, R., & Kaur, H. (2022). Computational investigation of bioactive 2,3-diaryl quinolines using DFT method: FT- IR, NMR spectra, NBO, NLO, HOMO-LUMO transitions, and quantum-chemical properties. Journal of Molecular Structure, 1253, 132285.
  • Sundaraganesan, N., Ilakiamani, S., Salem, H., Wojciechowski, P. M., & Michalska, D. (2005). FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 2995–3001.
  • Mulliken, R. S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. Journal of Chemical Physics, 23, 1833-1840.
  • Fukui, K. (1982). The Role of frontier orbitals in chemical reactions.Science, 218, 747–754.
  • Fradi, T., Noureddine, O., Taheur, F. B., Guergueb, M., Nasri, S., Amiri, N., Almahri, A., Roisnel, T., Guerineau, V., Issoui, N., & Nasri, H. (2021). New DMAP meso-arylporphyrin Magnesium (II) complex.spectroscopic, cyclic voltammetry and X-ray molecular structure characterization. DFT, DOS and MEP calculations and Antioxidant and Antifungal activities. Journal of Molecular Structure, 1236, 130299.
  • Eşme, A. (2017). Theoretical studies of molecular structure, spectroscopic, electronic and NLO investigations of Oxamyl. Journal of Balıkesir University Institute of Science and Technology, 19(2), 99-115.
  • Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwertenzu den einzelnen elektronen eines atoms. Physica, 1, 104-113.
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 7512-7516.
  • Pearson, R. G. (1986). Absolute electronegativity and hardness correlated with the molecular orbital theory. Proceedings of the National Academy of Sciences of the USA, 83, 8440-8441.
  • Parr, R. G., Szentpaly, L. V., & Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
  • Perdew, J. P., & Levy, M. (1983). Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative iscontinuities. Physical Review Letters, 51(20), 1884-1887.
  • Perdew, J. P., Parr, R. G., Levy, M., & Balduz, J. L. Jr. (1982). Density functional theory for fractional particle number: derivative discontinuities of the energy. Physical Review Letters, 49(23), 1691-1694.
  • Clark, T., Chandrasekhar, J., Spitznagel, G. W., & Schleyer, P. V. R. (1983). Efficient diffuse function- augmented basis sets for anion calculations. III.* The 3-21+G basis set for first-row elements, Li-F. Journal of Computational Chemistry, 4, 294-301.
  • Guthrie, J. P. (2009). A blind challenge for computational solvation free energies: introduction and overview. Journal of Physical Chemistry B, 113, 4501–4507.
  • Klimovich, P. V., & Mobley, D. L. (2010). Predicting hydration free energies using all-atom molecular dynamics simulations and multiple starting conformations. Journal of Computer-Aided Molecular Design, 24, 307–316.
  • Matos, G. D. R., Kyu, D. Y., Loeffler, H. H., Chodera, J. D., Shirts, M. R., & Mobley, D. L. (2017). Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the FreeSolv database. Journal of Chemical & Engineering Data, 62(5), 1559–1569.
  • Michalík, M., & Lukeš, V. (2016). The validation of quantum chemical lipophilicity prediction of alcohols. Acta Chimica Slovaca, 9(2), 89-94.
  • Elik, M., & Serdaroğlu, G. (2017). A computational study of 1-substituted methyl 9-methyl-9H-pyrido[3,4-b]indole-3-carboxylate: quantum chemical descriptors, FMO and NBO analysis. Cumhuriyet Science Journal, 38(4), 138-155.
  • Serdaroğlu, G., & Elik, M. (2017). DFT based quantum chemical descriptors of 1-substituted THβC, DHβC, βC derivatives. Cumhuriyet Science Journal, 38(4), 647-660.
  • Van De Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling:towards prediction paradise?. Nature Reviews Drug Discovery, 2(3), 192-204.
  • Van de Waterbeemd, H., Smith, D. A., & Jones, B. C. (2001).Lipophilicity in PK design: methyl, ethyl, futile.Journal of Computer-Aided Molecular Design, 15, 273-286.
  • Foresman, J. B., & Frisch, Æ. (2015). Exploring chemistry with electronic structure methods, third edition, Gaussian, Inc. Wallingford, CT USA.
  • Bohnert, T., & Prakash, C. (2012). ADME profiling in drug discovery and development: an overview. Encyclopedia of Drug Metabolism and Interactions, 1-35.
  • Garrido, N. M., Queimada, A. J., Jorge, M., Macedo, E. A., Ioannis, G., & Economou, I. G. (2009). 1-Octanol/water partition coefficients of n-alkanes from molecular simulations of absolute solvation free energies. Journal of Chemical Theory and Computation, 5, 2436-2446.
  • Hansch, C., Björkroth, J. P., & Leo, A. (1987). Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. Journal of Pharmaceutical Sciences, 76(9), 663-687.
  • Weinhold, F., Landis, C. R., & Glendening, E. D. (2016). What is NBO analysis and how is it useful?. International Reviews in Physical Chemistry, 35(3), 399-440.
  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899-926.
  • Hurst, M., & Munn, R. W. (1989).In Organic Materials for Nonlinear Optics; R.A. Hann, D. Bloor, Eds.; The Royal Society of Chemistry: London.
  • Garza, A. J., Osman, O. I., Asiri, A. M., & Scuseria, G. E. (2015). Can gap tuning schemes of long-range corrected hybrid functionals improve the description of hyperpolarizabilities?. Journal of Physical Chemistry B, 119, 1202−1212.
  • Rajeshirke, M., & Sekar, N. (2018). NLO properties of ester containing fluorescent carbazole based styryl dyes-consolidated spectroscopic and DFT approach. Optical Materials, 76, 191-209.
  • Abraham, J. P., Sajan, D., Hubert, I. J., & Jayakumar, V. S. (2008). Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of p-amino acetanilide. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 71, 355-367.
  • Karamanis, P., Pouchan, C., & Maroulis, G. (2008). Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Physical Review A, 77, 013201-013203.
  • Ahmed, A. B., Feki, H., Abid, Y., Boughzala, H., & Mlayah, A. (2008). Structural, vibrational and theoretical studies of l-histidine bromide. Journal of Molecular Structure, 888(1-3), 180-186.
  • Sethi, A., & Prakash, R. (2015). Novel synthetic ester of Brassicasterol, DFT investigation including NBO, NLO response, reactivity descriptor and its intramolecular interactions analyzed by AIM theory. Journal of Molecular Structure, 1083, 72-81.
  • Shahid, M., Salim, M., Khalid, M., Tahir, M. N., Khan, M. U., & Braga, A. A. C. (2018). Synthetic, XRD, non-covalent interactions and solvent dependent nonlinear optical studies of sulfadiazine-ortho-vanillin schiff base: (E)-4-((2-hydroxy-3-methoxy- benzylidene) amino)-N-(pyrimidin-2-yl) benzene-sulfonamide. Journal of Molecular Structure, 1161, 66-75.
  • Murray, J. S., & Politzer, P. (2011). The electrostatic potential: an overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 153-322.
  • Murray, J., & Sen, K. (1996). Molecular electrostatic potentials: concepts and applications, 1 st edition, Elsevier, Amsterdam.
  • Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: a euristic interpretation by means of electrostatic molecular potentials. Advances in Quantum Chemistry, 11, 115-193.
APA Serin S (2022). Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. , 433 - 452. 10.35193/bseufbd.1075723
Chicago Serin Sümeyya Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. (2022): 433 - 452. 10.35193/bseufbd.1075723
MLA Serin Sümeyya Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. , 2022, ss.433 - 452. 10.35193/bseufbd.1075723
AMA Serin S Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. . 2022; 433 - 452. 10.35193/bseufbd.1075723
Vancouver Serin S Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. . 2022; 433 - 452. 10.35193/bseufbd.1075723
IEEE Serin S "Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline." , ss.433 - 452, 2022. 10.35193/bseufbd.1075723
ISNAD Serin, Sümeyya. "Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline". (2022), 433-452. https://doi.org/10.35193/bseufbd.1075723
APA Serin S (2022). Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 433 - 452. 10.35193/bseufbd.1075723
Chicago Serin Sümeyya Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 9, no.1 (2022): 433 - 452. 10.35193/bseufbd.1075723
MLA Serin Sümeyya Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, vol.9, no.1, 2022, ss.433 - 452. 10.35193/bseufbd.1075723
AMA Serin S Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022; 9(1): 433 - 452. 10.35193/bseufbd.1075723
Vancouver Serin S Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi. 2022; 9(1): 433 - 452. 10.35193/bseufbd.1075723
IEEE Serin S "Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline." Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9, ss.433 - 452, 2022. 10.35193/bseufbd.1075723
ISNAD Serin, Sümeyya. "Comparative Quantum Chemical Analysis of Midaflur, a Fluorinated Aminoimidazoline". Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi 9/1 (2022), 433-452. https://doi.org/10.35193/bseufbd.1075723