Yıl: 2022 Cilt: 0 Sayı: 16 Sayfa Aralığı: 170 - 184 Metin Dili: Türkçe DOI: 10.47072/demiryolu.1130088 İndeks Tarihi: 29-07-2022

Demiryolu Hat Geometrisinin Fraktal Analizi

Öz:
Hat geometrisi muayene araçlarıyla yapılan ölçümlerden elde edilen grafiklere göre demiryolu hattı yatay ve düşey düzlemlerde düzgün olmayan dalgalı bir geometriye sahiptir. Bu geometrik yapı fraktal desen olarak göz önüne alındığında hat geometrisinin düzgünsüzlüğü fraktal boyutlar yardımı ile sayısal olarak ifade edilebilir. Bu çalışmada Ankara-Eskişehir Yüksek Hızlı Tren (YHT) hattının geometrik düzgünsüzlüğünü belirlemek için fraktal analiz metodundan faydalanılmıştır. Fraktal boyutları hesaplamak için cetvel metodunu temel alan bir hesap algoritması kullanılmıştır. Fraktal boyutlar fleş ve nivelman grafikleri için hesaplanmıştır. Yapılan hesaplamalara göre, hat geometrisinin genel düzgünsüzlüğünün fraktal boyut ile sayısal olarak ifade edilebildiği belirlenmiştir. Çalışmanın sonunda hat kalitesinin göstergesi olan geometrik parametrelerin standart sapması ile fraktal boyutlar arasındaki ilişki araştırılmıştır. Buna göre önerilen fraktal boyut ile standart sapma arasında güçlü bir ilişki vardır.
Anahtar Kelime: Hat geometrisi Kalite indeksi. Fraktal analiz

Fractal Analysis of Railway Track Geometry

Öz:
The railway track has a non-uniform wavy geometry in the horizontal and vertical planes, as seen in the graphs produced by track geometry recording cars. The roughness of the track geometry can be expressed numerically using fractal dimensions if this geometric structure is considered a fractal pattern. In this study, fractal analysis method was used to determine the geometric roughness of the Ankara-Eskişehir High-Speed Railway track. A calculation algorithm based on the ruler method was used to calculate fractal dimensions. Fractal dimensions are calculated for alignment and longitudinal level graphs. According to the calculations, it has been determined that the general unevenness of the line geometry can be expressed numerically with the fractal dimension. At the end of the study, the relationship between the standard deviation of geometric parameters, which are indicators of track quality, and fractal dimensions, was investigated. Accordingly, there is a strong relationship between the proposed fractal dimension and the standard deviation.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M.V. Taciroğlu, M. Karaşahin, M. Tığdemir, “Yüksek hızlı tren hatlarında hat kalitesine etki eden parametreler üzerine bir çalışma”, Ç. Ü. Müh.Mim. Fak. Dergisi, Cilt 31, Sayı 2, s. 279-291, Aralık 2016
  • [2] J.P. Hyslip, “Fractal Analysis of Geometry Data for Railway Track Condition Assessment,” Ph.D. Thesis, Dept. Civil and Environ. Eng., Grad. School of the Univ. of Massachusetts, Massachusetts, 2002.
  • [3] F.J. Heyns, “Construction and maintenance of underground railway tracks to safety standard of SANS: 0339,” J. South Afr. Inst. Min. Metall., vol.106, no. 12, 2006
  • [4] A.R.B. Berawi, R. Delgado, R. Calçada, C. Vale, “Evaluating track geometrical quality through different methodologies,” Int. J. Technol., vol. 1, no. 1, pp. 38–47, 2010
  • [5] J. Sadeghi, H. Heydari, E. Amiri Doloei, “Improvement of railway maintenance approach by developing a new railway condition index,” J. Transp. Eng. Part A., vol. 143, no.8, 2017
  • [6] T. Lidén, “Railway infrastructure maintenance - a survey of planning problems and conducted research,” Transport. Res. Procedia, vol. 10, no.7, pp. 574–583, 2015, doi:10.1016/j.trpro.2015.09.011
  • [7] A. Falamarzi, S. Moridpour, M. Nazem, “A review of rail track degradation prediction models,” Aust. J. Civil Eng., vol. 17, no. 2, pp. 152–166, 2019, doi:10.1080/14488353.2019.1667710
  • [8] P. Yalınız, S. İça, “Demiryollarında düzeltici bakım çalışmalarının etkilerinin standart sapma yöntemi ile değerlendirilmesi,” Demiryolu Mühendisliği, no. 13, pp. 29-42, Jan. 2021, doi: 10.47072/demiryolu.802565
  • [9] Railway applications-Track — Track geometry quality, part 5: Geometric quality levels – plain line, switches and crossings, EN-13848-5, 2017
  • [10] Railway applications-Track — Track geometry quality, part 1: Characterisation of track geometry, EN-13848-1, 2019
  • [11] I.Soleimanmeigouni, A. Ahmadi, U. Kumar, “Track geometry degradation and maintenance modelling: A review,” Proc. IMechE Part F: J. Rail Rapid Transit., vol. 232, no.1, pp. 73–102, 2018, doi:10.1177/0954409716657849
  • [12] H. Li, T. Xiao, “Improved generalized energy index method for comprehensive evaluation and prediction of track irregularity”, J. Stat. Comput. Simul., no. 84, pp. 1213–1231, 2014, https://doi.org/10.1080/00949655.2013.797420
  • [13] Railway applications-track — Track geometry quality, part 6: Characterisation of track geometry quality, EN-13848-6, 2014
  • [14] J.S., Mundrey, Railway Track Engineering. New Delhi, India: McGraw-Hill, 2003
  • [15] J. Sadeghi, “Development of railway track geometry indexes based on statistical distribution of geometry data,” J. Transport. Eng., ASCE, vol.136, no.8, pp. 693–700, 2010, doi: 10.1061/(ASCE)0733-947X(2010)136:8(693)
  • [16] P. Xu, Q. Sun, R. Liu, F. Wang, “A short-range prediction model for track quality index,” Proc. Inst. Mech. Eng. F J Rail Rapid Transit., vol. 225, no.3, pp. 277–285, 2011 J. Madejski, J. Grabozyk, “Continuous geometry measurement for diagnostics of tracks and switches,” In Proceedings of the International Conference on Switches, Delft, Netherlands, 2002
  • [17] R.K. Liu, P. Xu, Z.Z. Sun, C. Zou, Q.X. Sun, “Establishment of track quality index standard recommendations for beijing metro,” Discrete Dyn. Nat. Soc., vol. 2015, doi: 10.1155/2015/473830
  • [18] I. Arasteh Khouy, P. Larsson-Kraik, A. Nissen, U. Juntti, H. Schunnesson, “Optimisation of track geometry inspection interval,” Proc. IMechE, Part F: J. Rail Rapid. Transit., vol. 228, no.5, pp.546–556, 2014, doi: 10.1177/0954409713484711
  • [19] A. Falamarzi, S. Moridpour, M. Nazem, “A time-based track quality index: Melbourne tram case study,” Int. J. Rail Transport., vol. 9, no.1, pp. 23-38, 2019, doi:10.1080/23248378.2019.1703838
  • [20] M. Landgraf, F. Hansmann, “Fractal analysis as an innovative approach for evaluating the condition of railway tracks,” Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit., vol. 233, no. 6, pp. 596–605, 2019, doi:10.1177/0954409718795763
  • [21] B. Mandelbrot, The fractal geometry of nature, San Francisco, USA:W.H: Freeman and Company, 1983
  • [22] B.H. Kaye, A random walk through fractal dimesions, New York, USA:VCH Publishers, 1989
  • [23] B.L. Cox, J.S.Y. Wang, “Fractal surfaces: Measurement and applications in the earth sciences”, Fractals, vol. 1, no.1, pp. 87–115, 1993
  • [24] M.V. Taciroğlu, “Yüksek hızlı tren hatlarında fleş ve nivelman bozulmalarının modellenmesi,” Doktora Tezi, İnş. Müh. ABD, Fen Bil. Enst. Süleyman Demirel Üniv., Isparta, 2015
  • [25] E. Kolay, K. Kayabalı, “Agregaların köşeliliğinin ve pürüzlülüğünün belirlenmesinde fraktal boyut yönteminin kullanılması,” Yerbilimler, cilt 26, sayı 2, 2005
APA Taciroğlu M, Karasahin M, tigdemir m, IŞIKER H (2022). Demiryolu Hat Geometrisinin Fraktal Analizi. , 170 - 184. 10.47072/demiryolu.1130088
Chicago Taciroğlu Murat Vergi,Karasahin Mustafa,tigdemir mesut,IŞIKER Hakan Demiryolu Hat Geometrisinin Fraktal Analizi. (2022): 170 - 184. 10.47072/demiryolu.1130088
MLA Taciroğlu Murat Vergi,Karasahin Mustafa,tigdemir mesut,IŞIKER Hakan Demiryolu Hat Geometrisinin Fraktal Analizi. , 2022, ss.170 - 184. 10.47072/demiryolu.1130088
AMA Taciroğlu M,Karasahin M,tigdemir m,IŞIKER H Demiryolu Hat Geometrisinin Fraktal Analizi. . 2022; 170 - 184. 10.47072/demiryolu.1130088
Vancouver Taciroğlu M,Karasahin M,tigdemir m,IŞIKER H Demiryolu Hat Geometrisinin Fraktal Analizi. . 2022; 170 - 184. 10.47072/demiryolu.1130088
IEEE Taciroğlu M,Karasahin M,tigdemir m,IŞIKER H "Demiryolu Hat Geometrisinin Fraktal Analizi." , ss.170 - 184, 2022. 10.47072/demiryolu.1130088
ISNAD Taciroğlu, Murat Vergi vd. "Demiryolu Hat Geometrisinin Fraktal Analizi". (2022), 170-184. https://doi.org/10.47072/demiryolu.1130088
APA Taciroğlu M, Karasahin M, tigdemir m, IŞIKER H (2022). Demiryolu Hat Geometrisinin Fraktal Analizi. Demiryolu Mühendisliği, 0(16), 170 - 184. 10.47072/demiryolu.1130088
Chicago Taciroğlu Murat Vergi,Karasahin Mustafa,tigdemir mesut,IŞIKER Hakan Demiryolu Hat Geometrisinin Fraktal Analizi. Demiryolu Mühendisliği 0, no.16 (2022): 170 - 184. 10.47072/demiryolu.1130088
MLA Taciroğlu Murat Vergi,Karasahin Mustafa,tigdemir mesut,IŞIKER Hakan Demiryolu Hat Geometrisinin Fraktal Analizi. Demiryolu Mühendisliği, vol.0, no.16, 2022, ss.170 - 184. 10.47072/demiryolu.1130088
AMA Taciroğlu M,Karasahin M,tigdemir m,IŞIKER H Demiryolu Hat Geometrisinin Fraktal Analizi. Demiryolu Mühendisliği. 2022; 0(16): 170 - 184. 10.47072/demiryolu.1130088
Vancouver Taciroğlu M,Karasahin M,tigdemir m,IŞIKER H Demiryolu Hat Geometrisinin Fraktal Analizi. Demiryolu Mühendisliği. 2022; 0(16): 170 - 184. 10.47072/demiryolu.1130088
IEEE Taciroğlu M,Karasahin M,tigdemir m,IŞIKER H "Demiryolu Hat Geometrisinin Fraktal Analizi." Demiryolu Mühendisliği, 0, ss.170 - 184, 2022. 10.47072/demiryolu.1130088
ISNAD Taciroğlu, Murat Vergi vd. "Demiryolu Hat Geometrisinin Fraktal Analizi". Demiryolu Mühendisliği 16 (2022), 170-184. https://doi.org/10.47072/demiryolu.1130088