Yıl: 2022 Cilt: 4 Sayı: 2 Sayfa Aralığı: 64 - 73 Metin Dili: Türkçe DOI: 10.52827/hititmedj.1008303 İndeks Tarihi: 15-03-2023

İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü

Öz:
İskemi-reperfüzyon hasarı, miyokard enfarktüsü, iskemik inme, akut böbrek hasarı, periferik arter hastalığı, orak hücre anemisi dahil olmak üzere çok çeşitli patolojilerin morbidite ve mortalitesinde rol oynar. İskemide kan akımındaki azalmanın derecesine ve süresine bağlı olarak hücreler metabolik ihtiyaçlarını karşılayamaz. Hızlı reperfüzyon, oksijen açlığı çeken hücrelerin kurtarılması için gerekli olmasına rağmen, hücrede oluşan oksijen paradoksu hücreleri strese sürükler. Reperfüzyon ile birlikte ortaya çıkan stres yanıtı sınırlandırılamazsa hücre ölüm programları aktive olarak hücre ölür. Bu derlemenin amacı iskemi reperfüzyon hasarında rol oynayan hücresel stres mekanizmalarını ve ölüm programlarını tanımlamaktır.
Anahtar Kelime: Hücre ölüm yolları iskemi-reperfüzyon hasarı stres mekanizmaları

Stress and Cell Death in Ischemia Reperfusion Damage

Öz:
Ischemia-reperfusion injury is the most common cause of morbidity and mortality in some diseases, such as myocardial infarction, stroke, sickle cell anemia, and peripheral vascular disease. The degree of blood flow reduction and the length of the ischemic period are associated with metabolite starvation and tissue damage. Therefore, it is expected that reperfusion protects oxygen-starved tissues. However, producing reactive oxygen species with reperfusion (oxygen paradox) causes stress. If stress cannot be limited, cell death programs begin, and the cell dies. This review aims to describe cellular stress mechanisms and death programs that play a role in ischemia-reperfusion injury.
Anahtar Kelime: Apoptosis Autophagy İschemia-Reperfusion Injury Necrosis Stress Mechanisms

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Kalogeris T, Baines PC, Krenz M, Korthuis RJ. İschemia/Reper- fusion. Comprehensive Physiology 2016;7:113-170.
  • 2. Wu L, Xiong X, Wu X et al. Targeting Oxidative Stress and Inflam- mation to Prevent Ischemia-Reperfusion Injury. Frontiers in Molecular Neuroscience 2020;13:1-34.
  • 3. Mukherjeea A, Sarkarb S, Jana S, Swarnakar S, Das N. Neurop- rotective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury. Brain Research 2019;1704:164-173.
  • 4. Shiyong L, Dawei J, Zachary TR et al. Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia- Reperfusion Injury. Nano Letters 2019;19:7334-7341.
  • 5. Wang Y, Luo J, Li SY. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury. ACS Appl Mater Interfaces 2019;11:3763-3770.
  • 6. Xu X, Zhang L, Ye X et al. Nrf2/ARE pathway inhibits ROS- induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflammation Researh 2018; 67:57-65.
  • 7. Xing P, Ma K, Wu J, Long W, Wang D. Protective effect of polysac- charide peptide on cerebral ischemia-reperfusion injury in rats. Molecular Medicine Reports 2018;18:5371-5378.
  • 8. Kryl'skii ED, Popova TN, Safonova OA, Stolyarova AO, Razuvaev GA, Carvalho MAP. Transcriptional Regulation of Antioxidant Enzymes Activity and Modulation of Oxidative Stress by Melatonin in Rats Under Cerebral Ischemia/Reperfusion Conditions. Neuroscience 2019;406:653-666.
  • 9. Lorente L, Martín MM, Pérez-Cejas A et al. Association between total antioxidant capacity and mortality in ischemic stroke patients. Annals of Intensive Care 2016;6:39.
  • 10. Deng H, Zuo X, Zhang J et al. Α-lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats. Mole- cular Medicine Reports 2015;11:3659-3665.
  • 11. Lin HC, Narasimhan P, Liu SY, Chan PH, Lai I. Postconditioning mitigates cell death following oxygen and glucose deprivation in PC12 cells and forebrain reperfusion injury in rats. Journal of Neuroscience Research 2015;93:140-148.
  • 12. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical signifi- cance? Hypertension 2004;44:248-252.
  • 13. Pérez-Torres I, Guarner-Lans V, Rubio-Ruiz ME. Reductive Stress in Inflammation-Associated Diseases and the Pro- Oxidant Effect of Antioxidant Agents. International Journal of Molecular Science 2017;8:2098.
  • 14. Alp N, Channon KM. Regulation of endothelial nitric oxide synt- hase by tetrahydrobiopterin in vascular disease. Arterioscle- rosis, Thrombosis, and Vascular Biology 2004;24:413-420.
  • 15. Vallance P. Endothelial regulation of vascular tone. Postgra- duate Medical Journal 1992;68:697–701.
  • 16. Pérez-Torres I, Manzano-Pech L, Rubio-Ruíz ME, Soto ME, Guarner-Lans V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules 2020;25:2555.
  • 17. Shiva S, Sack MN, Greer JJ et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochond- rial electron transfer. Journal of Experimental Medicine 2007; 204:2089-2102.
  • 18. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews 2007;87:315- 424.
  • 19. Samdani AF, Dawson TD, Dawson VL. Nitric Oxide Synthase in Models of Focal Ischemia. Stroke 1997;28:1283-1288.
  • 20. Huang Z, Huang PL, Ma J et al. Enlarged Infarcts in Endothelial Nitric Oxide Synthase Nakavt Mice are Attenuated by Nitro-L- Arginine. Journal of Cerebral Blood Flow & Metabolism 1996; 16:981-987.
  • 21. Chabrier P, Auguet M, Spinnewyn B et al. BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxi- dation: A promising neuroprotective strategy. PNAS 1999;96: 10824-10829.
  • 22. Parmentier S, Böhme GA, Lerouet D et al. Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. British Journal of Pharmacology 2009;127:546-552.
  • 23. Benhar M, Forrester M, Stamler JS. Protein denitrosylation: enzymatic mechanisms and cellular functions. Nature reviews molecular cell biology 2009;10:721-732.
  • 24. Lima B, Forrester TM, Hess TD, Stamler JS. S-Nitrosylation in Cardiovascular Signaling. Circulation Research 2011;106:633- 646.
  • 25. Sun J, Murphy E. Protein S-nitrosylation and cardioprotection. Circulation Research 2010;106:285-296.
  • 26. Greenacre SAB, Ischiropoulos H. Tyrosine nitration: Localisa- tion, quantification, consequences for protein function and signal transduction. Free radical research 2001;34:541-581.
  • 27. Zielonka J, Sikora A, Joseph J, Kalyanaraman B. Peroxynitrite is the major species formed from different flux ratios of co- generated nitric oxide and superoxide: direct reaction with boronate-based fluorescent probe. The Journal of Biological Chemistry 2010;285:14210-14216.
  • 28. Moroa MA, Almeida A, Bolaños JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biology and Medicine 2005;39:1291-1304.
  • 29. Shi H, Noguchi N, Xu Y, Niki E. Formation of Phospholipid Hydroperoxides and Its Inhibition by α-Tocopherol in Rat Brain Synaptosomes Induced by Peroxynitrite. Biochemical and Biophysical Research Communications 1999;257:651-656.
  • 30. Nanetti L, Taffi R, Vignini A et al. Reactive oxygen species plas- matic levels in ischemic stroke. Molecular and cellular bioche- mistry 2007;303:19-25.
  • 31. Paolocci N, Ekelund U, Isoda T et al. cGMP-independent inotro- pic effects of nitric oxide and peroxynitrite donors: potential role for nitrosylation. American Journal of Physiology-Heart and Circulatory Physiology 2000;279:1982-1988.
  • 32. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochemical and Biophysical Rese- arch Communications 2003;305:776-783.
  • 33. Fajardo NMP, Meijer C, Kruyt FAE. The endoplasmic reticulum stress/unfolded protein response in gliomagenesis, tumor progression and as a therapeutic target in glioblastoma. Bioc- hemical Pharmacology 2016;118:1-8.
  • 34. Urano F, Wang X, Bertolotti A et al. Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1. Science 2000;287:664-666.
  • 35. Yoneda T, Imaizumi K, Oono K et al. Activation of Caspase-12, an Endoplastic Reticulum (ER) Resident Caspase, through Tumor Necrosis Factor Receptor-associated Factor 2-depen- dent Mechanism in Response to the ER Stress. Journal of Biological Chemistry 2001;276:3935-13940.
  • 36. Martindale JJ, Fernandez R, Thuerauf D et al. Endoplasmic Reticulum Stress Gene Induction and Protection From Ischemia/Reperfusion Injury in the Hearts of Transgenic Mice With a Tamoxifen-Regulated Form of ATF6. Circulation Rese- arch 2006;98:1186–1193.
  • 37. Ishida KS, Nakajima M, Uemura K, Yoshida K. Ischemic preconditioning protects cardiomyocytes against ischemic injury by inducing GRP78. Biochemical and Biophysical Re- search Communications 2006;345:1600-1605.
  • 38. Weigand K, Brost S, Steinebrunner N, Büchler M, Schemmer P, Müller M. Ischemia/Reperfusion Injury in Liver Surgery and Transplantation: Pathophysiology. Hepato-Pancreato-Biliary (HPB) Surgery 2012;176723:1-8.
  • 39. Hartley T, Siva M, Lai E, Teodoro T, Zhang L, Volchuk A. Endop- lasmic reticulum stress response in an INS-1 pancreatic beta- cell line with inducible expression of a folding-deficient proin- sulin. BMC Molecular and Cell Biology 2010;11:1-18.
  • 40. Szegezdi E, Duffy A, O'Mahoney ME et al. ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochemical and Biophysical Research Communications 2006;349:1406- 1411.
  • 41. Ruan Y, Zeng J, Jin Q et al. Endoplasmic reticulum stress ser- ves an important role in cardiac ischemia/reperfusion injury. Experimental and Therapeutic Medicine 2020;20:268.
  • 42. Murphy E, Steenbergen C. Mechanisms underlying acute pro- tection from cardiac ischemia-reperfusion injury. Physiological Reviews 2008;88:581-609.
  • 43. Tabas I, Ron D. Integrating the mechanisms of apoptosis indu- ced by endoplasmic reticulum stress. Nature Cell Biology 2011; 13:184-190.
  • 44. Vitadello M, Penzo D, Petronilli V et al. Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. The FASEB Journal 2003;17:923-925.
  • 45. Zheng D, Wang G, Li S, Fan G, Peng T. Calpain-1 induces en- doplasmic reticulum stress in promoting cardiomyocyte apop- tosis following hypoxia/reoxygenation. Biochimica et Biophy- sica Acta 2015;1852:882-892.
  • 46. Muñoz JP, Ivanova S, Sánchez-Wandelmer J et al. Mfn2 modu- lates the UPR and mitochondrial function via repression of PERK. The EMBO Journal 2013;32:2348-2361.
  • 47. Cao L, Chen Y, Zhang Z, Li Y, Zhao P. Endoplasmic Reticulum Stress-Induced NLRP1 Inflammasome Activation Contributes to Myocardial Ischemia/Reperfusion Injury. Shock 2019;51: 511-518.
  • 48. Yi Y. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. The Korean Journal of Physiology & Pharmacology 2018;22:1-15.
  • 49. Zhang G, Wang X, Gillette TG, Deng Y, Wang Z. Unfolded Pro- tein Response as a Therapeutic Target in Cardiovascular Dise- ase. Current Topics in Medicinal Chemistry 2019;19:1902- 1917.
  • 50. Asada R, Kanemoto S, Kondo S, Saito A, Imaizumi K. The signalling from endoplasmic reticulum-resident bZIP transcrip- tion factors involved in diverse cellular physiology. Journal of Biochemistry 2011;149:507-518.
  • 51. Jin JK, Blackwood EA, Azizi K et al. ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart. Circulation Research 2017;120:862-875.
  • 52. Zhang C, Tang Y, Li Y et al. Unfolded protein response plays a critical role in heart damage after myocardial ischemia/reper- fusion in rats. PLoS One 2017;12:e0179042.
  • 53. Ibuki T, Yamasaki Y, Mizuguchi H, Sokabe M. Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons. Neuroscience 2012;518:45-48.
  • 54. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and Cellular Biology 2001;21:1249-12559.
  • 55. Ghosh AP, Klocke BJ, Ballestas ME, Roth KA. CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 2012; 7:e39586.
  • 56. Meyer G, Martinet W. Autophagy in the cardiovascular system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2009;1793:1485-1495.
  • 57. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003;112:481-490.
  • 58. Di Lisa F, Canton M, Menabò R, Kaludercic N, Bernardi P. Mitochondria and cardioprotection. Heart Failure Reviews 2007;12:249-260.
  • 59. Grover GJ, Atwal KS, Sleph PG et al. Excessive ATP hydrolysis in ischemic myocardium by mitochondrial F1F0-ATPase: effect of selective pharmacological inhibition of mitochondrial ATPase hydrolase activity. American Journal of Physiology-Heart and Circulatory 2004;287:1747-1755.
  • 60. Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA. Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodyna- mics. Journal of Cardiovascular Pharmacology 2006;47:493- 499.
  • 61. Lisa FD, Kaludercic N, Carpi A, Menabo R, Giorgio M. Mitoc- hondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Research in Cardiology 2009;104:131-139.
  • 62. Dunn JD, Alvarez LA, Zhang X, Soldati T. Reactive oxygen spe- cies and mitochondria: A nexus of cellular homeostasis. Redox Biology 2015;6:472-485.
  • 63. Giedt RJ, Yang C, Zweier JL, Matzavinos A, Alevriadou BR. Mitochondrial fission in endothelial cells after simulated ischemia/reperfusion: role of nitric oxide and reactive oxygen species. Free Radical Biology Medicine 2012;52:348-356.
  • 64. Chen L, Knowlton AA. Mitochondria and heart failure: new insights into an energetic problem. Minerva Cardioangiologica 2010;8:213-229.
  • 65. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010;121:2012-2022.
  • 66. Lejay A, Meyer A, Schlagowski AI et al. Mitochondria: mitoc- hondrial participation in ischemia-reperfusion injury in skeletal muscle. International Journal of Biochemistry Cell Biology 2014;50:101-105.
  • 67. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiological Reviews 2007;87: 99-163.
  • 68. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009;40:e331-339.
  • 69. Galle PR, Hofmann WJ, Walczak H et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. The Journal of Experimental Medicine 1995;182:1223-1230.
  • 70. Hochhauser E, Cheporko Y, Yasovich N et al. Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochemistry and Biophysics 2007;47:11-20.
  • 71. Sciarretta S, Yee D, Ammann P et al. Role of NADPH oxidase in the regulation of autophagy in cardiomyocytes. Clinical Science (Lond) 2015;128:387-403.
  • 72. Cardinal J, Pan P, Tsung A. Protective role of cisplatin in ische- mic liver injury through induction of autophagy. Autophagy 2009;5:1211-1212.
  • 73. Gottlieb RA, Gustafsson AB. Mitochondrial turnover in the heart. Biochimica Biophysica Acta 2011;1813:1295-1301.
  • 74. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42.
  • 75. He B, Xiao J, Ren AJ et al. Role of miR-1 and miR-133a in myo- cardial ischemic postconditioning. Journal of Biomedical Science 2011;18:22.
  • 76. Mengesdorf T, Jensen PH, Mies G, Aufenberg J, Paschen W. Down-regulation of parkin protein in transient focal cerebral ischemia: A link between stroke and degenerative disease? PNAS 2002;99:15042-15047.
  • 77. Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Annals Of The New York Academy Of Sciences 2008;1147:233-241.
  • 78. Halestrap AP. A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochemical Society Transactions 2010;38:841-860.
  • 79. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Celluler and Mole- culer Life Science 2016;73:2195-2209.
  • 80. Smith CC, Yellon DM. Necroptosis, necrostatins and tissue injury. Journal of Celluler and Molecular Medicine 2011;15: 1797-1806.
  • 81. Ong SB, Samangouei P, Kalkhoran SB, Haunsenloy D. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. Journal of Celluler and Molecular Cardiology 2015;78:23-34.
  • 82. Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F. micro- RNA: emerging therapeutic targets in acute ischemic diseases. Pharmacology Therapeutics 2010;125:92-104.
  • 83. Wang Y, Dawson VL, Dawson TM. Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Experimental Neurology 2009;218:193-202.
  • 84. Pallast S, Arai K, Pekcec A et al. Increased nuclear apoptosis- inducing factor after transient focal ischemia: a 12/15- lipoxygenase-dependent organelle damage pathway. Journal Of Cerebral Blood Flow And Metabolism 2010;30:1157-1167.
  • 85. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 2016;15:348-366.
APA Bozok Ü, Küçük A, Arslan M (2022). İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. , 64 - 73. 10.52827/hititmedj.1008303
Chicago Bozok Ümmü Gülşen,Küçük Ayşegül,Arslan Mustafa İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. (2022): 64 - 73. 10.52827/hititmedj.1008303
MLA Bozok Ümmü Gülşen,Küçük Ayşegül,Arslan Mustafa İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. , 2022, ss.64 - 73. 10.52827/hititmedj.1008303
AMA Bozok Ü,Küçük A,Arslan M İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. . 2022; 64 - 73. 10.52827/hititmedj.1008303
Vancouver Bozok Ü,Küçük A,Arslan M İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. . 2022; 64 - 73. 10.52827/hititmedj.1008303
IEEE Bozok Ü,Küçük A,Arslan M "İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü." , ss.64 - 73, 2022. 10.52827/hititmedj.1008303
ISNAD Bozok, Ümmü Gülşen vd. "İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü". (2022), 64-73. https://doi.org/10.52827/hititmedj.1008303
APA Bozok Ü, Küçük A, Arslan M (2022). İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. Hitit medical journal (Online), 4(2), 64 - 73. 10.52827/hititmedj.1008303
Chicago Bozok Ümmü Gülşen,Küçük Ayşegül,Arslan Mustafa İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. Hitit medical journal (Online) 4, no.2 (2022): 64 - 73. 10.52827/hititmedj.1008303
MLA Bozok Ümmü Gülşen,Küçük Ayşegül,Arslan Mustafa İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. Hitit medical journal (Online), vol.4, no.2, 2022, ss.64 - 73. 10.52827/hititmedj.1008303
AMA Bozok Ü,Küçük A,Arslan M İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. Hitit medical journal (Online). 2022; 4(2): 64 - 73. 10.52827/hititmedj.1008303
Vancouver Bozok Ü,Küçük A,Arslan M İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü. Hitit medical journal (Online). 2022; 4(2): 64 - 73. 10.52827/hititmedj.1008303
IEEE Bozok Ü,Küçük A,Arslan M "İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü." Hitit medical journal (Online), 4, ss.64 - 73, 2022. 10.52827/hititmedj.1008303
ISNAD Bozok, Ümmü Gülşen vd. "İskemi Reperfüzyon Hasarında Stres ve Hücre Ölümü". Hitit medical journal (Online) 4/2 (2022), 64-73. https://doi.org/10.52827/hititmedj.1008303