Yıl: 2022 Cilt: 44 Sayı: 3 Sayfa Aralığı: 299 - 305 Metin Dili: İngilizce DOI: 10.14744/etd.2021.58701 İndeks Tarihi: 05-08-2022

Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?

Öz:
Objective: Anorectal malformations (ARM) are classified as a multifactorial disease. The etiology of ARM is still not clear due to the complexity of the pathological anomalies. Materials and Methods: The microarray-based comparative genomic hybridization (array CGH) results of 10 patients with ARM not associated with a specific syndrome were analyzed using the 8x60K ISCA Agilent microarray platform (Human Genome CGH Microarray; Agilent Technologies, Inc., Santa Clara, CA, USA). Pathogenic copy number variants were further confirmed using fluorescence in situ hybridization or quantitative real-time polymerase chain reaction testing. Results: Chromosome 22q11.2 deletion was detected in 2 patients. One of these patients had anal stenosis, minor cardiac abnormalities, and a small 0.89-Mb deletion. The second patient had anal atresia, immune deficiency, inguinal hernia, and a 2.7-Mb cryptic deletion. The overlapping genes in the deletion regions of the 2 patients were the DGCR5, DGCR6, and PRODH genes. Conclusion: DGCR6 alters the expression of important genes such as TBX1 and affects neural crest migration. Given that ARM are caused by abnormalities in neural crest cell migration, it may be that these genes play a role in the etiology. To our knowledge, this is one of the smallest interstitial deletions in the chromosome 22q11.2 region to be published to date. Further research on the DGCR6 gene, which may be a candidate gene responsible for anal atresia, will clarify this point.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Levitt MA, Peña A. Anorectal malformations. Orphanet J Rare Dis 2007; 2: 33.
  • 2. Cuschieri A; EUROCAT Working Group. Descriptive epidemiology of isolated anal anomalies: a survey of 4.6 million births in Europe. Am J Med Genet 2001; 103(3): 207–15.
  • 3. Holschneider AM, Hutson JM. Anorectal malformations in children: embryology, diagnosis, surgical treatment, follow-up. Springer Science & Business Media; 2006.
  • 4. van Rooij IA, Wijers CH, Rieu PN, Hendriks HS, Brouwers MM, Knoers NV, et al. Maternal and paternal risk factors for anorectal malformations: a Dutch case-control study. Birth Defects Res A Clin Mol Teratol 2010; 88(3):152–8.
  • 5. van de Putte R, van Rooij IALM, Marcelis CLM, Guo M, Brunner HG, Addor MC, et al. Spectrum of congenital anomalies among VACTERL cases: a EUROCAT population-based study. Pediatr Res 2020; 87(3): 541–9.
  • 6. Vermes G, László D, Mátrai Á, Czeizel AE, Ács N. Maternal factors in the origin of isolated anorectal malformations - a population-based case-control study. J Matern Fetal Neonatal Med 2016; 29(14): 2316– 21.
  • 7. Wang Z, Wang Q, Gu C, Zhang J, Wang Y. Abnormal serum vitamin A levels and retinoic acid receptor α expression patterns in children with anorectal malformation. Pediatr Surg Int 2019; 35(8): 903–10.
  • 8. Wijers CH, van Rooij IA, Marcelis CL, Brunner HG, de Blaauw I, Roeleveld N. Genetic and nongenetic etiology of nonsyndromic anorectal malformations: a systematic review. Birth Defects Res C Embryo Today 2014; 102(4): 382–400.
  • 9. Khanna K, Sharma S, Pabalan N, Singh N, Gupta DK. A review of genetic factors contributing to the etiopathogenesis of anorectal malformations. Pediatr Surg Int 2018; 34(1): 9–20.
  • 10. Schramm C, Draaken M, Tewes G, Bartels E, Schmiedeke E, Märzheuser S, et al. Autosomal-dominant non-syndromic anal atresia: sequencing of candidate genes, array-based molecular karyotyping, and review of the literature. Eur J Pediatr 2011; 170(6): 741–6.
  • 11. Marcelis C, de Blaauw I, Brunner H. Chromosomal anomalies in the etiology of anorectal malformations: a review. Am J Med Genet A 2011; 155A(11): 2692–704.
  • 12. Winberg J, Gustavsson P, Papadogiannakis N, Sahlin E, Bradley F, Nordenskjöld E, et al. Mutation screening and array comparative genomic hybridization using a 180K oligonucleotide array in VACTERL association. PLoS One 2014; 9(1): e85313.
  • 13. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020; 22(2): 245–57.
  • 14. Kates WR, Burnette CP, Bessette BA, Folley BS, Strunge L, Jabs EW, et al. Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2). J Child Neurol 2004; 19(5): 337–42.
  • 15. Wu HY, Rusnack SL, Bellah RD, Plachter N, McDonald-McGinn DM, Zackai EH, et al. Genitourinary malformations in chromosome 22q11.2 deletion. J Urol 2002; 168(6): 2564–5.
  • 16. Cassidy SB, Allanson JE. Management of genetic syndromes: John Wiley & Sons; 2010.
  • 17. Campbell IM, Sheppard SE, Crowley TB, McGinn DE, Bailey A, McGinn MJ, et al. What is new with 22q? An update from the 22q and you center at the children’s hospital of Philadelphia. Am J Med Genet A 2018; 176(10): 2058–69.
  • 18. Conley ME, Beckwith JB, Mancer JF, Tenckhoff L. The spectrum of the DiGeorge syndrome. J Pediatr 1979; 94(6): 883–90.
  • 19. Wilson DI, Burn J, Scambler P, Goodship J. DiGeorge syndrome: part of CATCH 22. J Med Genet 1993; 30(10): 852–6.
  • 20. McDonald-McGinn DM, Driscoll DA, Bason L, Christensen K, Lynch D, Sullivan K, et al. Autosomal dominant “Opitz” GBBB syndrome due to a 22q11.2 deletion. Am J Med Genet 1995; 59(1): 103–13.
  • 21. Worthington S, Colley A, Fagan K, Dai K, Lipson AH. Anal anomalies: an uncommon feature of velocardiofacial (Shprintzen) syndrome? J Med Genet 1997; 34(1): 79–82.
  • 22. Wong EH, Cui L, Ng CL, Tang CS, Liu XL, So MT, et al. Genomewide copy number variation study in anorectal malformations. Hum Mol Genet 2013; 22(3): 621–31.
  • 23. Dworschak GC, Draaken M, Hilger AC, Schramm C, Bartels E, Schmiedeke E, et al. Genome-wide mapping of copy number variations in patients with both anorectal malformations and central nervous system abnormalities. Birth Defects Res A Clin Mol Teratol 2015; 103(4): 235–42.
  • 24. Demczuk S, Thomas G, Aurias A. Isolation of a novel gene from the DiGeorge syndrome critical region with homology to Drosophila gdl and to human LAMC1 genes. Hum Mol Genet 1996; 5(5): 633–8.
  • 25. Gao W, Higaki T, Eguchi-Ishimae M, Iwabuki H, Wu Z, Yamamoto E, et al. DGCR6 at the proximal part of the DiGeorge critical region is involved in conotruncal heart defects. Hum Genome Var 2015; 2: 15004.
  • 26. Pfuhl T, Dürr M, Spurk A, Schwalbert B, Nord R, Mysliwietz J, et al. Biochemical characterisation of the proteins encoded by the DiGeorge critical region 6 (DGCR6) genes. Hum Genet 2005; 117(1): 70–80.
  • 27. Hierck BP, Molin DG, Boot MJ, Poelmann RE, Gittenberger-de Groot AC. A chicken model for DGCR6 as a modifier gene in the DiGeorge critical region. Pediatr Res 2004; 56(3): 440–8.
  • 28. Das Chakraborty R, Bernal AJ, Schoch K, Howard TD, Ip EH, Hooper SR, et al. Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome. Transl Psychiatry 2012; 2(4): e105. Erratum in: Transl Psychiatry 2012; 2: e124.
  • 29. Du Q, de la Morena MT, van Oers NSC. The genetics and epigenetics of 22q11.2 Deletion syndrome. Front Genet 2020; 10: 1365.
  • 30. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS, et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994; 182(8): 476–8.
APA ozyavuz cubuk p, kayhan g, Percin F (2022). Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. , 299 - 305. 10.14744/etd.2021.58701
Chicago ozyavuz cubuk pelin,kayhan gulsum,Percin Ferda Emriye Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. (2022): 299 - 305. 10.14744/etd.2021.58701
MLA ozyavuz cubuk pelin,kayhan gulsum,Percin Ferda Emriye Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. , 2022, ss.299 - 305. 10.14744/etd.2021.58701
AMA ozyavuz cubuk p,kayhan g,Percin F Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. . 2022; 299 - 305. 10.14744/etd.2021.58701
Vancouver ozyavuz cubuk p,kayhan g,Percin F Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. . 2022; 299 - 305. 10.14744/etd.2021.58701
IEEE ozyavuz cubuk p,kayhan g,Percin F "Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?." , ss.299 - 305, 2022. 10.14744/etd.2021.58701
ISNAD ozyavuz cubuk, pelin vd. "Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?". (2022), 299-305. https://doi.org/10.14744/etd.2021.58701
APA ozyavuz cubuk p, kayhan g, Percin F (2022). Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. Erciyes Medical Journal, 44(3), 299 - 305. 10.14744/etd.2021.58701
Chicago ozyavuz cubuk pelin,kayhan gulsum,Percin Ferda Emriye Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. Erciyes Medical Journal 44, no.3 (2022): 299 - 305. 10.14744/etd.2021.58701
MLA ozyavuz cubuk pelin,kayhan gulsum,Percin Ferda Emriye Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. Erciyes Medical Journal, vol.44, no.3, 2022, ss.299 - 305. 10.14744/etd.2021.58701
AMA ozyavuz cubuk p,kayhan g,Percin F Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. Erciyes Medical Journal. 2022; 44(3): 299 - 305. 10.14744/etd.2021.58701
Vancouver ozyavuz cubuk p,kayhan g,Percin F Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?. Erciyes Medical Journal. 2022; 44(3): 299 - 305. 10.14744/etd.2021.58701
IEEE ozyavuz cubuk p,kayhan g,Percin F "Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?." Erciyes Medical Journal, 44, ss.299 - 305, 2022. 10.14744/etd.2021.58701
ISNAD ozyavuz cubuk, pelin vd. "Molecular Karyotyping in Anorectal Malformations: Could DGCR6 Gene Haploinsufficiency Cause Anal Atresia in 22q11 Deletion Syndrome?". Erciyes Medical Journal 44/3 (2022), 299-305. https://doi.org/10.14744/etd.2021.58701