Yıl: 2021 Cilt: 1 Sayı: 2 Sayfa Aralığı: 56 - 66 Metin Dili: İngilizce DOI: 10.53391/mmnsa.2021.01.006 İndeks Tarihi: 21-02-2023

Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model

Öz:
In this paper, we consider a modified SIR (susceptible-infected-recovered/removed) model that describes the evolution in time of the infectious disease caused by Sars-Cov-2 (Severe Acute Respiratory Syndrome-Coronavirus-2). We take into consideration that this disease can be both symptomatic and asymptomatic. By formulating a suitable mathematical model via a system of ordinary differential equations (ODEs), we investigate how the vaccination rate and the fraction of avoided contacts affect the population dynamics.
Anahtar Kelime: SIR model asymptomatic cases avoided contacts vaccination effect COVID-19

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] https://www.who.int/health-topics/coronavirus.
  • [2] Bernoulli, D., Blower, S. An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Reviews in medical virology, 14(5), 275-288, (2004). [CrossRef]
  • [3] Rahimi, I., Chen, F. and Gandomi, A.H. A review on COVID-19 forecasting models. Neural Computing and Applications, 1-11, (2021). [CrossRef]
  • [4] Akgül, A., Ahmed, N., Raza, A., et al. New applications related to Covid-19. Results in Physics, 20, 103663, (2021). [CrossRef]
  • [5] Farman, M., Akgül, A., Ahmad, A., Baleanu, D., Saleem, M.U. Dynamical Transmission of Coronavirus Model with Analysis and Simulation. CMES-Computer Modeling in Engineering and Sciences, 127(2), 753–769, (2021). [CrossRef]
  • [6] Amico, E., Bulai, I.M. How political choices shaped Covid connectivity: the Italian case study, Plos One, (2021). [CrossRef].
  • [7] Zeb, A., Alzahrani, E., Erturk, V.S., Zaman, G. Mathematical model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class. BioMed Research International, (2020). [CrossRef]
  • [8] Zhang, Z., Zeb, A., Hussain, S., Alzahrani, E. Dynamics of COVID-19 mathematical model with stochastic perturbation. Advances in Difference Equations, 2020(1), 1-12, (2020). [CrossRef]
  • [9] Naik, P.A., Yavuz, M., Qureshi, S., Zu, J. & Townley, S. Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. The European Physical Journal Plus, 135(10), 1-42, (2020). [CrossRef]
  • [10] Zhang, Z., Zeb, A., Egbelowo, O.F., Erturk, V.S. Dynamics of a fractional order mathematical model for COVID-19 epidemic. Advances in Difference Equations, 2020(1), 1-16, (2020). [CrossRef]
  • [11] Özköse, F., Yavuz, M. Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Computers in Biology and Medicine, 105044, (2021). [CrossRef]
  • [12] Nazir, G., Zeb, A., Shah, K., Saeed, T., Khan, R.A. & Khan, S.I.U. Study of COVID-19 mathematical model of fractional order via modified Euler method. Alexandria Engineering Journal, 60(6), 5287-5296, (2021). [CrossRef]
  • [13] Bushnaq, S., Saeed, T., Torres, D.F.M., Zeb, A. Control of COVID-19 dynamics through a fractional-order model. Alexandria Engineering Journal, 60(4), 3587-3592, (2021). [CrossRef]
  • [14] Yavuz, M., Coşar, F.Ö, Günay, F., Özdemir, F.N. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open Journal of Modelling and Simulation, 9(3), 299-321, (2021). [CrossRef]
  • [15] Zhang, Z., Zeb, A., Alzahrani, E. & Iqbal, S. Crowding effects on the dynamics of COVID-19 mathematical model. Advances in Difference Equations, 2020(1), 1-13, (2020). [CrossRef]
  • [16] Li, X.P., Al Bayatti, H., Din, A. & Zeb, A. A vigorous study of fractional order COVID-19 model via ABC derivatives. Results in Physics, 29, 104737, (2021). [CrossRef]
  • [17] Guan, J., Wei, Y., Zhao, Y., Chen, F. Modeling the transmission dynamics of COVID-19 epidemic: a systematic review. Journal of Biomedical Research, 34(6), 422-430, (2020). [CrossRef]
  • [18] Atangana, A., Araz, S.İ. Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications. Advances in Difference Equations, 2020(1), 1-89, (2020). [CrossRef]
  • [19] Amaro, J.E., Dudouet, J., Orce, J.N. Global analysis of the COVID-19 pandemic using simple epidemiological models. Applied Mathematical Modelling, 90, 995-1008, (2021). [CrossRef]
  • [20] Buonomo, B., Della Marca, R. Effects of information-induced behavioural changes during the COVID-19 lockdowns: the case of Italy. Royal Society Open Science, 7(10), 201635, (2020). [CrossRef]
  • [21] Zhu, H., Li, Y., Jin, X., Huang, J., Liu, X., Qian, Y., Tan, J. Transmission dynamics and control methodology of COVID-19: A modeling study. Applied Mathematical Modelling, 89(2), 1983-1998, (2021). [CrossRef]
  • [22] Pellis, L. et al. & University of Manchester COVID-19 Modelling Group. Challenges in control of Covid-19: short doubling time and long delay to effect of interventions. Philosophical Transactions of the Royal Society B, 376(1829), 20200264, (2021). [CrossRef]
  • [23] Sun, D., Duan, L., Xiong, J. & Wang, D. Modeling and forecasting the spread tendency of the COVID-19 in China. Advances in Difference Equations, 2020(1), 1-16, (2020). [CrossRef]
  • [24] Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A. & Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature medicine, 26(6), 855–860, (2020). [CrossRef]
  • [25] Pedersen, M.G., Meneghini, M. Data-driven estimation of change points reveals correlation between face mask use and accelerated curtailing of the first wave of the COVID-19 epidemic in Italy. Infectious Diseases, 53(4), 243-251, (2021). [CrossRef]
  • [26] Viguerie, A., et al. Simulating the spread of COVID-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (SEIRD) model with heterogeneous diffusion. Applied Mathematics Letters, 111, 106617, (2021). [CrossRef]
  • [27] Ferguson, N., et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand.Imperial College London, (2020). [CrossRef]
  • [28] Chowdhury, R., Heng, K., Shawon, M.S.R., Goh, G., Okonofua, D., Ochoa-Rosales, C., ... & Franco, O.H. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. European journal of epidemiology, 35(5), 389-399, (2020). [CrossRef]
  • [29] Jiao, J., Liu, Z., Cai, S. Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible. Applied Mathematics Letters, 107, 106442, (2020). [CrossRef]
  • [30] Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L. & Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA, 323(14), 1406-1407, (2020). [CrossRef]
  • [31] Sakurai, A., Sasaki, T., Kato, S., Hayashi, M., Tsuzuki, S.I., Ishihara, T., et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med, 383(9), 885-886, (2020). [CrossRef]
  • [32] Moore, S., Hill, E.M., Tildesley, M.J., Dyson, L., Keeling, M.J. Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. The Lancet Infectious Diseases, 21(6), 793-802, (2021). [CrossRef]
  • [33] Aniţa, S., Banerjee, M., Ghosh, S., Volpert, V. Vaccination in a two-group epidemic model. Applied Mathematics Letters, 119, 107197, (2021). [CrossRef]
  • [34] Estrada, E. COVID-19 and SARS-CoV-2: Modeling the present, looking at the future. Physics Reports, 869, 1-51, (2020). [CrossRef]
  • [35] Bulai, I.M. Modeling Covid-19 Considering Asymptomatic Cases and Avoided Contacts. Chapter in Trends in Biomathematics: Chaos and Control in Epidemics, Ecosystems, and Cells, Springer, (2021). [CrossRef]
  • [36] https://www.istat.it/storage/rapporto-annuale/2018/Rapportoannuale2018.pdf.
  • [37] https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json
  • [38] Pedersen, M.G., Meneghini, M. Quantifying undetected COVID-19 cases and effects of containment measures in Italy, (2020).[Preprint].
  • [39] National Institute of Infectious Diseases Japan. Field Briefing: Diamond Princess COVID-19 Cases, 20 Feb Update. Last accessed March 12, 2020. Available from: https://www. niid.go.jp/niid/en/2019-ncov-e/9417-covid-dp-fe-02.html.
  • [40] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. Journal of mathematical biology, 28, 365-382, (1990). [CrossRef]
  • [41] P. Van den Driessche, J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 180(1), 29–48, (2002). [CrossRef]
APA Allegretti S, BULAI I, Marino R, Menandro M, Parisi K (2021). Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. , 56 - 66. 10.53391/mmnsa.2021.01.006
Chicago Allegretti Stefania,BULAI Iulia Martina,Marino Roberto,Menandro Margherita Anna,Parisi Katia Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. (2021): 56 - 66. 10.53391/mmnsa.2021.01.006
MLA Allegretti Stefania,BULAI Iulia Martina,Marino Roberto,Menandro Margherita Anna,Parisi Katia Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. , 2021, ss.56 - 66. 10.53391/mmnsa.2021.01.006
AMA Allegretti S,BULAI I,Marino R,Menandro M,Parisi K Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. . 2021; 56 - 66. 10.53391/mmnsa.2021.01.006
Vancouver Allegretti S,BULAI I,Marino R,Menandro M,Parisi K Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. . 2021; 56 - 66. 10.53391/mmnsa.2021.01.006
IEEE Allegretti S,BULAI I,Marino R,Menandro M,Parisi K "Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model." , ss.56 - 66, 2021. 10.53391/mmnsa.2021.01.006
ISNAD Allegretti, Stefania vd. "Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model". (2021), 56-66. https://doi.org/10.53391/mmnsa.2021.01.006
APA Allegretti S, BULAI I, Marino R, Menandro M, Parisi K (2021). Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 56 - 66. 10.53391/mmnsa.2021.01.006
Chicago Allegretti Stefania,BULAI Iulia Martina,Marino Roberto,Menandro Margherita Anna,Parisi Katia Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. Mathematical Modelling and Numerical Simulation with Applications 1, no.2 (2021): 56 - 66. 10.53391/mmnsa.2021.01.006
MLA Allegretti Stefania,BULAI Iulia Martina,Marino Roberto,Menandro Margherita Anna,Parisi Katia Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. Mathematical Modelling and Numerical Simulation with Applications, vol.1, no.2, 2021, ss.56 - 66. 10.53391/mmnsa.2021.01.006
AMA Allegretti S,BULAI I,Marino R,Menandro M,Parisi K Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. Mathematical Modelling and Numerical Simulation with Applications. 2021; 1(2): 56 - 66. 10.53391/mmnsa.2021.01.006
Vancouver Allegretti S,BULAI I,Marino R,Menandro M,Parisi K Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model. Mathematical Modelling and Numerical Simulation with Applications. 2021; 1(2): 56 - 66. 10.53391/mmnsa.2021.01.006
IEEE Allegretti S,BULAI I,Marino R,Menandro M,Parisi K "Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model." Mathematical Modelling and Numerical Simulation with Applications, 1, ss.56 - 66, 2021. 10.53391/mmnsa.2021.01.006
ISNAD Allegretti, Stefania vd. "Vaccination effect conjoint to fraction of avoided contacts for a Sars-Cov-2 mathematical model". Mathematical Modelling and Numerical Simulation with Applications 1/2 (2021), 56-66. https://doi.org/10.53391/mmnsa.2021.01.006