TY - JOUR TI - Highly siderophile element and osmium isotope systematics of basaltic volcanics: a different approach to petrological processes AB - The highly siderophile element (HSE) or platinum group element (PGE) and Os isotope systematics of basaltic volcanics have recently received a significant attention because of their potential to constrain the petrological processes on magma generation and evolution. The HSE and Os isotope data, which are generally observed at very low concentrations in basalts and obtained by modern enrichment and analytical techniques, are frequently used in petrological studies. The HSE contents and ratios from whole-rock analysis of basalts, and combined evaluation with the theoretical knowledge and modelling of HSE behaviour during the partial melting of mantle and the differentiation of basaltic magma would provide opportunity for geochemical modelling on mantle melting. Besides, HSE contents and Pd-PGE/Ir-PGE ratios are important indicators for the nature of mantle sulfides, the sulfur saturation conditions of the mantle source, sulfide segregation, fractional crystallization, crustal assimilation and partial melting degrees in the origin and evolution of mantle-derived magmas. Therefore, in addition to the traditional whole-rock geochemical data obtained from Cenozoic aged basalts observed widely in Turkey, HSE and Os isotope systematics of these basalts can contribute to define the geochemical features of the mantle source, and to model petrological processes which are effective in the magma evolution. AU - YÜCEL, CEM AU - ARSLAN, Mehmet AU - Abdioglu Yazar, Emel AU - AR, BAHRİCAN AU - Temizel, İrfan DO - 10.19111/bulletinofmre.901001 PY - 2022 JO - Bulletin of the mineral research and exploration VL - 0 IS - 167 SN - 0026-4563 SP - 83 EP - 109 DB - TRDizin UR - http://search/yayin/detay/1109196 ER -