Yıl: 2021 Cilt: 24 Sayı: 3 Sayfa Aralığı: 232 - 243 Metin Dili: İngilizce DOI: 10.7126/cumudj.910642 İndeks Tarihi: 10-08-2022

INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE

Öz:
Purpose: To evalute the effects of Nd:YAG-laser, Er:YAG-laser, chlorhexidine and ozonated water application used for antibacterial effects on repair bond strength of silorane based composite. Materials and Methods: 100 cavities (2 mm deep, 3 mm diameter) prepared in acrylic blocks were filled with silorane composite and subjected thermal cycle and divided into 5 groups (N=20). Group 1: Chlorhexidine; Group 2: Ozonated-water; Group 3: Nd:YAG-laser; Group 4: Er:YAG-laser; Group 5 (control): untreated. And disinfection method treated according to the groups. Composite repair procedure was implemented with the same silorane based composite. Groups divided into 2 subgroups (n=10). One of the subgroups for each group was subjected second thermal cycle. All of the samples tested by a universal test device. Data were statistically analyzed and significance test of the difference between the two means, the variance analysis, and Student-t Test used. Results: No statistical difference was observed among groups after first thermal cycle (p>0.05). After the composite repair, there were no statistically significant difference between groups that were subjected to second thermal cycle (p>0.05). When each group was evaluated in themselves on comparing before and after the thermal cycle after the repair operation; as no statistically significant difference between Ozonated- water, Nd:YAG, Er:YAG and Control groups (p>0.05), a statistically significant decrease was observed only in the Chlorhexidine group after thermal cycle (p<0.05). Conclusions: Ozonated-water, Nd:YAG-laser and Er:YAG-laser applications can be used in the repair of silorane-based composite restorations as an alternative antibacterial application, since the application of chlorhexidine reduces the repair bonding strength.
Anahtar Kelime: Er:YAG laser composite repair Chlorhexidine Nd:YAG laser ozonated water

Farklı Antimikrobiyal Solüsyonların ve Lazer Sistemlerinin Siloran Bazlı Kompozitlerin Tamir Dayanımı Üzerine Etkisi

Öz:
Amaç: Antibakteriyel etkileri sebebiyle kullanılan ozonlu su, klorheksidin, Er:YAG lazer ve Nd:YAG lazer uygulamalarının yaşlandırma öncesi ve sonrası siloran bazlı kompozit restoratif materyallerinin tamir dayanımı üzerine incelenmesi Gereç ve yöntem: Akrilik bloklar üzerine 2 mm derinlik ve 3 mm çapında 100 kavite hazırlandı ve siloran bazlı kompozit ile doldurularak polimerize edildi. Tüm örnekler tamir işlemi öncesi yaşlandırma işlemine tabi tutuldu ve sonrasında 5 gruba ayrıldı (N=20). Grup 1: Klorheksidin; Grup 2: Ozonlu su; Grup 3: Nd:YAG- lazer; Grup 4: Er:YAG-lazer; Grup 5 (kontrol): İşlem uygulanmayan. Dezenfeksiyon işlemi gruplar doğrultusunda yapılarak siloran bazlı bir kompozitle tamir işlemi gerçekleştirildi. Sonrasında gruplar iki altgruba ayrılarak (n=10) bir alt gruba termal yaşlandırma işlemi uygulandı. Bütün örnekler üniversal test cihazında bağlanma dayanımı testine tabi tutuldu. Elde edilen verilerin istatistiksel analizi varyans analizi ve Student-t testi ile gerçekleştirildi. Bulgular: Yaşlandırma öncesi gruplar arasında istatistiksel olarak fark bulunmamıştır. (p>0,05). Yaşlandırma sonrası da gruplar arası istatistiksel bir fark görülmezken (p>0,05) gruplar yaşlandırma öncesi ve sonrası kendi içerisinde karşılaştırıldığında ozonlu su, Nd:YAG laze, Er:YAG lazer ve kontrol gruplarında istatistiksel olarak anlamlı bir fark bulunmazken (p>0,05), klorhekzidin grubunda yaşlandırma sonrası tamir bağlanma kuvveti anlamlı bir şekilde azalmıştır (p<0,05). Sonuç: Ozonlu su, Nd:YAG-lazer ve Er:YAG-lazer uygulamaları siloran bazlı kompozitlerin tamirinde alternatif dezenfektan olarak uygulanabilir. Ancak klorheksidin uygulaması yaşlanma sonrası tamir bağlanma kuvvetini azaltmaktadır.
Anahtar Kelime: Er:YAG lazer kompozit tamiri klorhekzidin Nd:YAG lazer ozonlu su

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Bibliyografik
  • 1. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 1997;105:97-116.
  • 2. Hürmüzlü F, Kılıç V. Analysis of Monomer Elution from Bulk-fill and Nanocomposites Cured with Different Light Curing Units Using High Performance Liquid Chromatography. J Photopolym Sci Technol 2020;33:27-36.
  • 3. Ilie N, Jelen E, Clementino-Luedemann T, Hickel R. Low-shrinkage composite for dental application. Dent Mater J 2007;26:149-155.
  • 4. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater 2005;21:68-74.
  • 5. Manhart J, Chen H, Hamm G, Hickel R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 2004;29:481-508.
  • 6. Moncada G, Fernandez E, Martin J, Arancibia C, Mjor IA, Gordan VV. Increasing the longevity of restorations by minimal intervention: a two-year clinical trial. Oper Dent 2008;33:258-264.
  • 7. Dall'Oca S, Papacchini F, Goracci C, Cury AH, Suh BI, Tay FR, Polimeni A, Ferrari M. Effect of oxygen inhibition on composite repair strength over time. J Biomed Mater Res B Appl Biomater 2007;81:493-498.
  • 8. Papacchini F, Dall'Oca S, Chieffi N, Goracci C, Sadek FT, Suh BI, Tay FR, Ferrari M. Composite-to- composite microtensile bond strength in the repair of a microfilled hybrid resin: effect of surface treatment and oxygen inhibition. J Adhes Dent 2007;9:25-31.
  • 9. Papacchini F, Toledano M, Monticelli F, Osorio R, Radovic I, Polimeni A, Garcia-Godoy F, Ferrari M. Hydrolytic stability of composite repair bond. Eur J Oral Sci 2007;115:417-424.
  • 10. Kidd EA, Ricketts DN, Beighton D. Criteria for caries removal at the enamel-dentine junction: a clinical and microbiological study. Br Dent J 1996;180:287-291.
  • 11. Mejare B, Mejare I, Edwardsson S. Bacteria beneath composite restorations--a culturing and histobacteriological study. Acta Odontol Scand 1979;37:267-275.
  • 12. Lenzi TL, Tedesco TK, Soares FZ, Loguercio AD, Rocha Rde O. Chlorhexidine does not increase immediate bond strength of etch-and-rinse adhesive to caries-affected dentin of primary and permanent teeth. Brazilian dental journal 2012;23:438-442.
  • 13. Kapdan A, Oztas N, Sumer Z. Comparing the antibacterial activity of gaseous ozone and chlorhexidine solution on a tooth cavity model. J Clin Exp Dent 2013;5:e133-137.
  • 14. Kollmuss M, Kist S, Obermeier K, Pelka AK, Hickel R, Huth KC. Antimicrobial effect of gaseous and aqueous ozone on caries pathogen microorganisms grown in biofilms. American journal of dentistry 2014;27:134-138.
  • 15. Azarpazhooh A, Limeback H. The application of ozone in dentistry: a systematic review of literature. J Dent 2008;36:104-116.
  • 16. Huth KC, Paschos E, Brand K, Hickel R. Effect of ozone on non-cavitated fissure carious lesions in permanent molars. A controlled prospective clinical study. Am J Dent 2005;18:223-228.
  • 17. Baysan A, Lynch E. Clinical reversal of root caries using ozone: 6-month results. Am J Dent 2007;20:203-208.
  • 18. Huth KC, Saugel B, Jakob FM, Cappello C, Quirling M, Paschos E, Ern K, Hickel R, Brand K. Effect of aqueous ozone on the NF-kappaB system. J Dent Res 2007;86:451-456.
  • 19. Garcia EJ, Serrano AP, Urruchi WI, Deboni MC, Reis A, Grande RH, Loguercio AD. Influence of ozone gas and ozonated water application to dentin and bonded interfaces on resin-dentin bond strength. J Adhes Dent 2012;14:363-370.
  • 20. Kapdan A, Öztaş N. Effects of chlorhexidine and gaseous ozone on microleakage and on the bond strength of dentin bonding agents with compomer restoration on primary teeth. Journal of Dental Sciences 2015;10:46-54.
  • 21. Ribeiro CF, Anido AA, Rauscher FC, Yui KC, Goncalves SE. Marginal leakage in class V cavities pretreated with different laser energy densities. Photomed Laser Surg 2005;23:313-316.
  • 22. Krause F, Braun A, Lotz G, Kneist S, Jepsen S, Eberhard J. Evaluation of selective caries removal in deciduous teeth by a fluorescence feedback-controlled Er:YAG laser in vivo. Clin Oral Investig 2008;12:209-215.
  • 23. Costache I, Danila I. [The antimicrobial efficacy of an erbium laser on Streptococcus mutans. In vivo study]. Rev Med Chir Soc Med Nat Iasi 2010;114:551-554.
  • 24. Dalkilic EE, Arisu HD, Kivanc BH, Uctasli MB, Omurlu H. Effect of different disinfectant methods on the initial microtensile bond strength of a self-etch adhesive to dentin. Lasers Med Sci 2012;27:819-825.
  • 25. Noack MJ, Wicht MJ, Haak R. Lesion orientated caries treatment--a classification of carious dentin treatment procedures. Oral Health Prev Dent 2004;2 Suppl 1:301-306.
  • 26. Swadas M, Dave B, Vyas SM, Shah N. Evaluation and Comparison of the Antibacterial Activity against Streptococcus mutans of Grape Seed Extract at Different Concentrations with Chlorhexidine Gluconate: An in vitro Study. International journal of clinical pediatric dentistry 2016;9:181-185.
  • 27. Santos JN, Carrilho MR, De Goes MF, Zaia AA, Gomes BP, Souza-Filho FJ, Ferraz CC. Effect of chemical irrigants on the bond strength of a self-etching adhesive to pulp chamber dentin. J Endod 2006;32:1088-1090.
  • 28. Erhardt MC, Osorio R, Toledano M. Dentin treatment with MMPs inhibitors does not alter bond strengths to caries-affected dentin. J Dent 2008;36:1068-1073.
  • 29. Chaharom M, Ajami AA, Kimyai S, Abbasi A. Effect of chlorhexidine on the shear bond strength of self-etch adhesives to dentin African Journal of Biotechnology 2011;10:10054-7.
  • 30. Kılıç V, Hürmüzlü F. Klorheksidin uygulamasının bulk-fill ve nanofil bazlı kompozitlerin tamir bağlanma dayanımı üzerine etkisi. Selcuk Dental Journal 5:225-232.
  • 31. Tulunoglu O, Ayhan H, Olmez A, Bodur H. The effect of cavity disinfectants on microleakage in dentin bonding systems. J Clin Pediatr Dent 1998;22:299-305.
  • 32. Pithon MM, dos Santos RL. Does ozone water affect the bond strengths of orthodontic brackets? Aust Orthod J 2010;26:73-77.
  • 33. Akturk E, Bektas OO, Ozkanoglu S, EG GA. Do ozonated water and boric acid affect the bond strength to dentin in different adhesive systems? Nigerian journal of clinical practice 2019;22:1758-1764.
  • 34. Huth KC, Quirling M, Maier S, Kamereck K, Alkhayer M, Paschos E, Welsch U, Miethke T, Brand K, Hickel R. Effectiveness of ozone against endodontopathogenic microorganisms in a root canal biofilm model. Int Endod J 2009;42:3-13.
  • 35. Papacchini F, Monticelli F, Radovic I, Chieffi N, Goracci C, Tay FR, Polimeni A, Ferrari M. The application of hydrogen peroxide in composite repair. J Biomed Mater Res B Appl Biomater 2007;82:298-304.
  • 36. Magni E, Ferrari M, Papacchini F, Hickel R, Ilie N. Influence of ozone on the composite-to-composite bond. Clin Oral Investig 2011;15:249-256.
  • 37. Gurgan S, Yalcin Cakir F. The effect of three different mouthrinses on the surface hardness, gloss and colour change of bleached nano composite resins. Eur J Prosthodont Restor Dent 2008;16:104-108.
  • 38. Gurgan S, Yalcin F. The effect of 2 different bleaching regimens on the surface roughness and hardness of tooth-colored restorative materials. Quintessence Int 2007;38:e83-87.
  • 39. Lima DA, De Alexandre RS, Martins AC, Aguiar FH, Ambrosano GM, Lovadino JR. Effect of curing lights and bleaching agents on physical properties of a hybrid composite resin. J Esthet Restor Dent 2008;20:266-73; discussion 274-275.
  • 40. Cavalli V, de Carvalho RM, Giannini M. Influence of carbamide peroxide-based bleaching agents on the bond strength of resin-enamel/dentin interfaces. Braz Oral Res 2005;19:23-29.
  • 41. Monticelli F, Toledano M, Silva AS, Osorio E, Osorio R. Sealing effectiveness of etch-and-rinse vs self-etching adhesives after water aging: influence of acid etching and NaOCl dentin pretreatment. J Adhes Dent 2008;10:183-188.
  • 42. Toledano M, Osorio R, Osorio E, Aguilera FS, Yamauti M, Pashley DH, Tay F. Durability of resin- dentin bonds: effects of direct/indirect exposure and storage media. Dent Mater 2007;23:885-892.
  • 43. Yamauti M, Hashimoto M, Sano H, Ohno H, Carvalho RM, Kaga M, Tagami J, Oguchi H, Kubota M. Degradation of resin-dentin bonds using NaOCl storage. Dent Mater 2003;19:399-405.
  • 44. Goncalves SE, de Araujo MA, Damiao AJ. Dentin bond strength: influence of laser irradiation, acid etching, and hypermineralization. J Clin Laser Med Surg 1999;17:77-85.
  • 45. Stabholz A, Sahar-Helft S, Moshonov J. Lasers in endodontics. Dent Clin North Am 2004;48:809-32, vi.
  • 46. Alizadeh Oskoee P, Mohammadi N, Ebrahimi Chaharom ME, Kimyai S, Pournaghi Azar F, Rikhtegaran S, Shojaeei M. Effect of Surface Treatment with Er;Cr:YSSG, Nd:YAG, and CO2 Lasers on Repair Shear Bond Strength of a Silorane-based Composite Resin. J Dent Res Dent Clin Dent Prospects 2013;7:61-66.
  • 47. Turkmen C, Sazak H, Gunday M. Effects of the Nd:YAG laser, air-abrasion, and acid-etchant on filling materials. J Oral Rehabil 2006;33:64-69.
  • 48. Kimyai S, Oskoee SS, Mohammadi N, Rikhtegaran S, Bahari M, Oskoee PA, Vahedpour H. Effect of different mechanical and chemical surface treatments on the repaired bond strength of an indirect composite resin. Lasers Med Sci 2013.
  • 49. Kimyai S, Mohammadi N, Navimipour EJ, Rikhtegaran S. Comparison of the effect of three mechanical surface treatments on the repair bond strength of a laboratory composite. Photomedicine and laser surgery 2010;28 Suppl 2:S25-30.
  • 50. Fawzy AS, El-Askary FS, Amer MA. Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite. J Dent 2008;36:969-976.
  • 51. Schoop U, Kluger W, Moritz A, Nedjelik N, Georgopoulos A, Sperr W. Bactericidal effect of different laser systems in the deep layers of dentin. Lasers Surg Med 2004;35:111-116.
  • 52. Eren D BÖ, Herguner SŞ. Can Er:YAG laser be an alternative to conventional methods for repairing composite resins? Cumhuriyet Dent J 2013;16:125-132.
  • 53. Ozel Bektas O, Eren D, Herguner Siso S, Akin GE. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin. Lasers Med Sci 2012;27:723-728.
  • 54. Lucena-Martin C, Gonzalez-Lopez S, Navajas-Rodriguez de Mondelo JM. The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J Prosthet Dent 2001;86:481-488.
  • 55. Alexander R, Xie J, Fried D. Selective removal of residual composite from dental enamel surfaces using the third harmonic of a Q-switched Nd:YAG laser. Lasers Surg Med 2002;30:240-245.
  • 56. Magni E, Ferrari M, Papacchini F, Hickel R, Ilie N. Influence of ozone application on the repair strength of silorane-based and ormocer-based composites. Am J Dent 2010;23:260-264.
  • 57. Soderholm KJ, Roberts MJ. Variables influencing the repair strength of dental composites. Scand J Dent Res 1991;99:173-180.
  • 58. Kilic V, Hürmüzlü F. Effect of Light Sources on Bond Strength of Different Composite Resins Repaired with Bulk-Fill Composite. Odovtos-Int J Dent Sc 2021;23:103-115.
  • 59. Passos SP, Ozcan M, Vanderlei AD, Leite FP, Kimpara ET, Bottino MA. Bond strength durability of direct and indirect composite systems following surface conditioning for repair. J Adhes Dent 2007;9:443-447.
APA KAPTAN A, Hurmuzlu F (2021). INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. , 232 - 243. 10.7126/cumudj.910642
Chicago KAPTAN ALPER,Hurmuzlu Feridun INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. (2021): 232 - 243. 10.7126/cumudj.910642
MLA KAPTAN ALPER,Hurmuzlu Feridun INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. , 2021, ss.232 - 243. 10.7126/cumudj.910642
AMA KAPTAN A,Hurmuzlu F INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. . 2021; 232 - 243. 10.7126/cumudj.910642
Vancouver KAPTAN A,Hurmuzlu F INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. . 2021; 232 - 243. 10.7126/cumudj.910642
IEEE KAPTAN A,Hurmuzlu F "INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE." , ss.232 - 243, 2021. 10.7126/cumudj.910642
ISNAD KAPTAN, ALPER - Hurmuzlu, Feridun. "INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE". (2021), 232-243. https://doi.org/10.7126/cumudj.910642
APA KAPTAN A, Hurmuzlu F (2021). INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. Cumhuriyet Dental Journal , 24(3), 232 - 243. 10.7126/cumudj.910642
Chicago KAPTAN ALPER,Hurmuzlu Feridun INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. Cumhuriyet Dental Journal 24, no.3 (2021): 232 - 243. 10.7126/cumudj.910642
MLA KAPTAN ALPER,Hurmuzlu Feridun INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. Cumhuriyet Dental Journal , vol.24, no.3, 2021, ss.232 - 243. 10.7126/cumudj.910642
AMA KAPTAN A,Hurmuzlu F INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. Cumhuriyet Dental Journal . 2021; 24(3): 232 - 243. 10.7126/cumudj.910642
Vancouver KAPTAN A,Hurmuzlu F INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE. Cumhuriyet Dental Journal . 2021; 24(3): 232 - 243. 10.7126/cumudj.910642
IEEE KAPTAN A,Hurmuzlu F "INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE." Cumhuriyet Dental Journal , 24, ss.232 - 243, 2021. 10.7126/cumudj.910642
ISNAD KAPTAN, ALPER - Hurmuzlu, Feridun. "INFLUENCE OF DIFFERENT CAVITY DISINFECTION SOLUTIONS AND LASER SYSTEMS ON REPAIR BOND STRENGTH OF SILORANE BASED COMPOSITE". Cumhuriyet Dental Journal 24/3 (2021), 232-243. https://doi.org/10.7126/cumudj.910642