Yıl: 2022 Cilt: 10 Sayı: 1 Sayfa Aralığı: 30 - 34 Metin Dili: İngilizce DOI: 10.17694/bajece.943854 İndeks Tarihi: 12-09-2022

Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting

Öz:
In this work, optimization of the nanopillar arrays and thin films coated on silicon substrate has been investigated in order to minimize the optical reflection loss from the silicon substrate surface. Nano-pillars's height, incline angle, array properties are systematically optimized. Full field Finite Difference Time Domain method is used to simulate EM fields and calculate the reflection from the modified nanostructured substrate surfaces in 400nm-1100nm spectral range. Optimization recipe is clearly presented and it is not only useful for square arrays but for regular arrays of nano-pillars in general.
Anahtar Kelime: Nanopillars quantum efficiency anti-reflection thin films nano-structures truncated nano-cones solar 11 cells energy

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] P. Campbell, M A. Green. "Light trapping properties of pyramidally textured surfaces." J. Appl. Phys. Vol. 62. No.1, 1987, pp 243-249.
  • [2] S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen. "Anti-reflecting and photonic nanostructures." Mater. Sci. Eng. Rep., Vol.69. No.1-3, 2010, pp 1-35.
  • [3] P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light.” Nanotechnology Vol. 8. No.2, 1997, pp 53–56.
  • [4] Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates.” Opt. Lett. Vol.24. No.20, 1999, pp 1422–1424.
  • [5] K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces.” Nanotechnology Vol.11. No.3, 2000, pp 161–164.
  • [6] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks.” Appl. Phys. Lett. Vol.88, No.20, 2006, pp 201116.
  • [7] S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces.” Appl. Phys. Lett. Vol.93. No. 13, 2008, pp 133108.
  • [8] Y.-H. Pai, Y.-C. Lin, J.-L. Tsai, and G.-R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array.” Opt. Express Vol.19. No. 3, 2011, pp 1680–1690.
  • [9] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.” Nat. Nanotechnol. Vol.2. No.12, 2007, pp 770–774.
  • [10] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells.” Prog. Photovolt. Res. Appl. Vol.15. No.5, 2007, pp 415– 423.
  • [11] S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells.” Prog. Photovolt. Res. Appl. Vol.18. No.3, 2010, pp 195–203.
  • [12] H. Sai, H. Fujii, K. Arafune, Y. Ohshita, Y. Kanamori, H. Yugami, and M. Yamaguchi, “Wide-angle antireflection effect of subwavelength structures for solar cells.” Jpn. J. Appl. Phys. Vol. No. 46-6A, 2007, pp 3333–3336.
  • [13] P. Seliger, M. Mahvash, C. Wang, and A. F. J. Levi, “Optimization of aperiodic dielectric structures.” J. Appl. Phys. Vol. 100. No.3, 2006, pp 034310–034316.
  • [14] D. F. Edwards, “Silicon (Si),” Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, Orlando, Fla., (1985).
  • [15] B. L. Sopori and R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells.” Sol. Cells Vol.8. No.3, 1983, pp 249–261.
  • [16] D. Shir, J. Yoon, D. Chanda, J.-H. Ryu, and J. A. Rogers, “Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement.” Nano Lett. Vol.10. No.8, 2010, pp 3041–3046.
  • [17] H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-Free Image Sensor Pixels Comprising Silicon Nanowires with Selective Color Absorption.” Nano Lett. Vol.14. No.4, 2014, pp 1804–1809.
  • [18] T. Tut, Y. Dan, P. Duane, Y. Yu, M. Wober,and K. B. Crozier, “Vertical waveguides integrated with silicon photodetectors: Towards high efficiency and low cross-talk image sensors.”, Appl. Phys. Lett. Vol.100., 2012, pp 043504.
  • [19] J. Li, H.u Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Lo, and D. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting.”, Appl. Phys. Lett. Vol. 95, 2009, pp 033102.
  • [20] C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics.”, Opt. Express Vol. 20, No.1, 2011, pp 125-132.
  • [21] J. Proust, A. Fehrembach, F. Bedu, I. Ozerov, N. Bonod, “Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum.”, Sci. Rep. Vol. 6, 2016, pp 24947.
  • [22] J. Kim, S. You, C.Kim, “Surface Texturing of Si with Periodically Arrayed Oblique Nanopillars to Achieve Antireflection.”, Materials Vol. 14, 2021, pp380.
APA Tut T (2022). Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. , 30 - 34. 10.17694/bajece.943854
Chicago Tut Turgut Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. (2022): 30 - 34. 10.17694/bajece.943854
MLA Tut Turgut Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. , 2022, ss.30 - 34. 10.17694/bajece.943854
AMA Tut T Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. . 2022; 30 - 34. 10.17694/bajece.943854
Vancouver Tut T Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. . 2022; 30 - 34. 10.17694/bajece.943854
IEEE Tut T "Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting." , ss.30 - 34, 2022. 10.17694/bajece.943854
ISNAD Tut, Turgut. "Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting". (2022), 30-34. https://doi.org/10.17694/bajece.943854
APA Tut T (2022). Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. Balkan Journal of Electrical and Computer Engineering, 10(1), 30 - 34. 10.17694/bajece.943854
Chicago Tut Turgut Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. Balkan Journal of Electrical and Computer Engineering 10, no.1 (2022): 30 - 34. 10.17694/bajece.943854
MLA Tut Turgut Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. Balkan Journal of Electrical and Computer Engineering, vol.10, no.1, 2022, ss.30 - 34. 10.17694/bajece.943854
AMA Tut T Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. Balkan Journal of Electrical and Computer Engineering. 2022; 10(1): 30 - 34. 10.17694/bajece.943854
Vancouver Tut T Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting. Balkan Journal of Electrical and Computer Engineering. 2022; 10(1): 30 - 34. 10.17694/bajece.943854
IEEE Tut T "Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting." Balkan Journal of Electrical and Computer Engineering, 10, ss.30 - 34, 2022. 10.17694/bajece.943854
ISNAD Tut, Turgut. "Broadband Low Reflection Surfaces with Silicon Nano-pillar Square Arrays for Energy Harvesting". Balkan Journal of Electrical and Computer Engineering 10/1 (2022), 30-34. https://doi.org/10.17694/bajece.943854