Yıl: 2010 Cilt: 39 Sayı: 4 Sayfa Aralığı: 477 - 487 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Modules whose maximal submodules are supplements

Öz:
We study modules whose maximal submodules are supplements (direct summands). For a locally projective module, we prove that every maximal submodule is a direct summand if and only if it is semisimple and projective. We give a complete characterization of the modules whose maximal submodules are supplements over Dedekind domains.
Anahtar Kelime:

Konular: Matematik İstatistik ve Olasılık
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • [1] Alizade, R., Bilhan, G. and Smith, P.F. Modules whose maximal submodules have supplements, Comm. Algebra 29, 2389–2405, 2001.
  • [2] Anderson, F.W. and Fuller, K.R. Rings and Categories of Modules (Springer, New York, 1992).
  • [3] Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R. Lifting Modules. Supplements and Projectivity in Module Theory, (Frontiers in Mathematics, Birkh¨auser, Basel, 2006).
  • [4] Cohn, P.M. Basic Algebra (Springer, London, 2003).
  • [5] Drinfeld, V. Infinite–dimensional vector bundles in algebraic geometry: an introduction, in The Unity of Mathematics (Birkh¨auser, Boston, 2006), 263–304.
  • [6] Estrada, S., Guil Asensio, P.A., Prest, M. and Trlifaj, J. Model category structures arising from Drinfeld vector bundles, Work in progress.
  • [7] Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R. Extending Modules (Longman: Burnt Mill, 1994).
  • [8] Eklof, P.C. Modules with strange decomposition properties. Infinite length modules, Bielefeld, 75–87, 1998 (Trends Math., Birkh¨auser, Basel, 2000).
  • [9] Eklof, P.C. and Shelah, S. The Kaplansky test problems for @1-separable groups, Proc. Amer. Math. Soc. 126 (7), 1901–1907, 1998.
  • [10] Gruson, L. and Raynaud, M. Crit`eres de platitude et de projectivit´e. Techniques de “platification” d’un module, Invent. Math. 13, 1–89, 1971.
  • [11] Guil Asensio, P.A., Izurdiaga, M.C. and Torrecillas, B. Decomposition properties of strict Mittag-Leffler modules, J. Algebra 310, 290–302, 2007.
  • [12] Guil Asensio, P.A., Izurdiaga, M.C. and Torrecillas, B. Accesible subcategories of modules and pathological objects, Forum Math. 22 (3), 485–507, 2010.
  • [13] Kasch, F. Modules and Rings (Academic Press, London, 1982).
  • [14] Lam, T.Y. Lectures on Modules and Rings (Springer-Verlag, New York, 1999).
  • [15] Mcconnel, J.C. and Robson, J.C. Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra 26, 319–342, 1973.
  • [16] Mohamed, S.H. and M¨uller, B.J. Continuous and Discrete Modules (Cambridge University Press, New York, 1990).
  • [17] Sharp, R.Y. Steps in Commutative Algebra (Cambridge University Press, Cambridge, 1990).
  • [18] Sharpe, D.W. and Vamos, P. Injective Modules (Cambridge University Press, Cambridge, 1972).
  • [19] Wisbauer, R. Foundations of Modules and Rings (Gordon and Breach, Reading, 1991).
  • [20] Zimmermann-Huisgen, B. Pure submodules of direct products of free modules, Math. Ann. 224 (3), 233–245, 1976.
  • [21] Zimmermann-Huisgen, B. On the abundance of @1-separable modules, in: Abelian Groups and Noncommutative Rings, Contemp. Math.130, 167–180, 1992.
  • [22] Zöschinger, H. Komplementierte moduln ¨uber Dedekindringen, J. Algebra 29, 42–56, 1974.
APA BÜYÜKAŞIK E, YILMAZ D (2010). Modules whose maximal submodules are supplements. , 477 - 487.
Chicago BÜYÜKAŞIK Engin,YILMAZ Dilek Pusat Modules whose maximal submodules are supplements. (2010): 477 - 487.
MLA BÜYÜKAŞIK Engin,YILMAZ Dilek Pusat Modules whose maximal submodules are supplements. , 2010, ss.477 - 487.
AMA BÜYÜKAŞIK E,YILMAZ D Modules whose maximal submodules are supplements. . 2010; 477 - 487.
Vancouver BÜYÜKAŞIK E,YILMAZ D Modules whose maximal submodules are supplements. . 2010; 477 - 487.
IEEE BÜYÜKAŞIK E,YILMAZ D "Modules whose maximal submodules are supplements." , ss.477 - 487, 2010.
ISNAD BÜYÜKAŞIK, Engin - YILMAZ, Dilek Pusat. "Modules whose maximal submodules are supplements". (2010), 477-487.
APA BÜYÜKAŞIK E, YILMAZ D (2010). Modules whose maximal submodules are supplements. Hacettepe Journal of Mathematics and Statistics, 39(4), 477 - 487.
Chicago BÜYÜKAŞIK Engin,YILMAZ Dilek Pusat Modules whose maximal submodules are supplements. Hacettepe Journal of Mathematics and Statistics 39, no.4 (2010): 477 - 487.
MLA BÜYÜKAŞIK Engin,YILMAZ Dilek Pusat Modules whose maximal submodules are supplements. Hacettepe Journal of Mathematics and Statistics, vol.39, no.4, 2010, ss.477 - 487.
AMA BÜYÜKAŞIK E,YILMAZ D Modules whose maximal submodules are supplements. Hacettepe Journal of Mathematics and Statistics. 2010; 39(4): 477 - 487.
Vancouver BÜYÜKAŞIK E,YILMAZ D Modules whose maximal submodules are supplements. Hacettepe Journal of Mathematics and Statistics. 2010; 39(4): 477 - 487.
IEEE BÜYÜKAŞIK E,YILMAZ D "Modules whose maximal submodules are supplements." Hacettepe Journal of Mathematics and Statistics, 39, ss.477 - 487, 2010.
ISNAD BÜYÜKAŞIK, Engin - YILMAZ, Dilek Pusat. "Modules whose maximal submodules are supplements". Hacettepe Journal of Mathematics and Statistics 39/4 (2010), 477-487.