Yıl: 2022 Cilt: 30 Sayı: 2 Sayfa Aralığı: 211 - 219 Metin Dili: Türkçe DOI: 10.31796/ogummf.1022705 İndeks Tarihi: 18-10-2022

BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ

Öz:
Bu çalışmada, baryum (Ba(OH)2·8H2O ve BaSO4) veya magnezyum (Mg(OH)2 ve MgSO4·7H2O) içeren katıların, yerel bir simitsonit (ZnCO3) cevher örneğinin sulu sodyum hidroksit çözeltilerinde liçi sonrasında oluşan çözünmüş karbonat yüklü çözeltilerle etkileşimi, bu yüklü çözeltilerdeki çözünmüş karbonatın (BaCO3 veya MgCO3 olarak) uzaklaştırılması amacıyla, X-ışını kırınımı analizleri kullanılarak incelenmiştir. Çözünmüş karbonat yüklü çözeltilerin Ba(OH)2·8H2O ve MgSO4·7H2O katılarıyla etkileşimini takiben, sırasıyla, tek faz olarak BaCO3 ve ana faz olarak Mg(OH)2 içeren katıların oluştuğu gözlenmiştir. Diğer taraftan, BaSO4 ve Mg(OH)2 katılarının yüklü çözeltilerle herhangi bir etkileşime girmediği ve dönüşmeden kaldıkları belirlenmiştir. Bununla birlikte, çalışılan tüm deneysel koşullar altında, baryum veya magnezyum zinkat fazlarına dönüşümün olmadığı da ortaya çıkarılmıştır. Bu çalışma kapsamında, toprak alkali baryum ve magnezyum içerikli katıların çözünmüş karbonat yüklü çözeltilerle etkileştirilmeleri sonrasında ilgili karbonat fazlarına dönüşüm özellikleri, bu katıların çözünürlükleri dikkate alınarak tartışılmıştır. Ayrıca, seçilmiş deneyler sonrasında elde edilen bazı dönüşmüş katıların kızılötesi spektrumları ve taramalı elektron mikroskop görüntüleri de bu çalışma kapsamında sunulmuştur.
Anahtar Kelime: Baryum hidroksit Baryum sülfat Doğrudan dönüşüm Magnezyum hidroksit Magnezyum sülfat

INTERACTION OF BARIUM AND MAGNESIUM CONTAINING SOLIDS WITH CARBONATE LOADED SOLUTIONS

Öz:
In this study, the interaction of barium (Ba(OH)2·8H2O and BaSO4) or magnesium (Mg(OH)2 and MgSO4·7H2O) containing solids with dissolved carbonate-loaded solutions formed after leaching of a local smithsonite (ZnCO3) ore sample in aqueous sodium hydroxide solutions was investigated using X-ray diffraction analyses for the removal of dissolved carbonate (as BaCO3 or MgCO3) in these loaded solutions. It has been observed that solids containing BaCO3 as a single phase and Mg(OH)2 as a main phase are formed, respectively, following the interaction of dissolved carbonate-loaded solutions with Ba(OH)2·8H2O and MgSO4·7H2O solids. On the other hand, it was determined that BaSO4 and Mg(OH)2 solids did not interact with the carbonate-loaded solutions and remained unconverted. However, no conversion to barium or magnesium zincate phases was also found under all studied experimental conditions. Within this study, the conversion properties of alkaline-earth barium and magnesium-containing solids to their corresponding carbonate phases after interacting with dissolved carbonate-loaded solutions were discussed considering the solubilities of these solids. In addition, infrared spectra and scanning electron microscope images of some converted solids obtained after selected experiments were also presented within the scope of this study.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adler, H.H. ve Kerr, P.F. (1963). Infrared absorption frequency trends for anhydrous normal carbonates. American Mineralogist, 48, 124-137.
  • Barin, I. (1995). Thermochemical Data of Pure Substances. 3rd Edition, Weinheim, VCH.
  • Baroch, C.T., Hilliard, R.V. ve Lang, R.S. (1953). The caustic electrolytic-zinc process. Journal of The Electrochemical Society, 100, 165-172. doi: https://doi.org/10.1149/1.2781101
  • Benson, L.V. ve Teague, L.S. (1980). A Tabulation of Thermodynamic Data for Chemical Reactions Involving 58 Elements Common to Radioactive Waste Package Systems. Topical Report for Rockwell International, 97 sayfa.
  • Castillejos, A.H.E., de la Cruz, F.P. del B. ve Uribe, A.S. (1996). The direct conversion of celestite to strontium carbonate in sodium carbonate aqueous media. Hydrometallurgy, 40, 207-222. doi: https://doi.org/10.1016/0304-386X(94)00060-G
  • Chukanov, N.V. (2014). Infrared Spectra of Mineral Species. Volume 1, Dordrecht, Springer.
  • Debiemme-Chouvy, C. ve Vedel, J. (1991). Supersaturated zincate solutions: A study of the decomposition kinetics. Journal of The Electrochemical Society, 138, 2538-2542. doi: http://dx.doi.org/10.1149/1.2086013
  • Ehsani, İ. ve Obut, A. (2019). Conversion behaviours of Sr- and Ca-containing solids in dissolved carbonate containing alkaline pregnant zinc leaching solutions. Minerals Engineering, 135, 9-12. doi: https://doi.org/10.1016/j.mineng.2019.02.031
  • Ehsani, I., Ucyildiz, A. ve Obut. A. (2019). Leaching behaviour of zinc from a smithsonite ore in sodium hydroxide solutions. Physicochemical Problems of Mineral Processing, 55, 407-416. doi: https://doi.org/10.5277/ppmp18150
  • Free, M.L. (2013). Hydrometallurgy: Fundamentals and Applications. New Jersey, John Wiley & Sons.
  • Gómez-Ortíz, N.M., González-Gómez, W.S., de la Rosa- García, S.C., Oskam, G., Quintana, P., Soria-Castro, M., Gómez-Cornelio, S. ve Ortega-Morales, B.O. (2014). Antifungal activity of Ca[Zn(OH)3]2·2H2O coatings for the preservation of limestone monuments. An in vitro study, International Biodeterioration & Biodegradation, 91, 1-8. doi: http://dx.doi.org/10.1016/j.ibiod.2014.02.005
  • Huang, C.K. ve Kerr, P.F. (1960). Infrared study of the carbonate minerals. American Mineralogist, 45, 311- 324.
  • Kaya, M., Hussaini, S. ve Kursunoglu, S. (2020). Critical review on secondary zinc resources and their recycling technologies. Hydrometallurgy, 195, 105362. doi: https://doi.org/10.1016/j.hydromet.2020.105362
  • Kumaş, C., Ehsanı̇, I. ve Obut, A. (2020). Dissolution properties of a dolomite containing zinc ore in sodium hydroxide solutions. Scientific Mining Journal, 59, 93- 100. doi: https://doi.org/10.30797/madencilik.757995
  • Lide, D.R. (2010). CRC Handbook of Chemistry and Physics. 90th Edition, Florida, CRC Press.
  • Min, Y.-J., Oh, S.-J., Kim, M.-S., Choi, J.-H. ve Eom, S. (2019). Calcium zincate as an efficient reversible negative electrode material for rechargeable zinc-air batteries, Ionics, 25, 1707-1713. doi: https://doi.org/10.1007/s11581-018-2619-y
  • Moezzi, A., Cortie, M. ve McDonagh, A. (2011). Aqueous pathways for the formation of zinc oxide nanoparticles. Dalton Transactions, 40, 4871-4878. doi: https:/doi.org/ 10.1039/c0dt01748e
  • Monk, H. ve Mortifee, A.V.W. (1960). The system barium oxide, zinc oxide and water at 90° and 70°C. Journal of Applied Chemistry, 10, 456-460.
  • Mujahed, S.B. (1966). Electrowinning in Alkaline Medium-Electrolytic Production of Lead and Zinc from an Oxidized Ore from Develi (Kayseri) via Caustic Leaching (Yüksek Lisans Tezi). Middle East Technical University, Ankara.
  • Obut, A., Baláž, P. ve Girgin, İ. (2006). Direct mechanochemical conversion of celestite to SrCO3. Minerals Engineering, 19, 1185-1190. doi: https://doi.org/10.1016/j.mineng.2005.11.001
  • Ouanji, F., Ellouzi, I., Kacimi, M. ve Ziyad, M. (2019). Ca-hydroxyzincate: Synthesis and enhanced photocatalytic activity for the degradation of methylene blue under UV-light irradiation, Chemistry Africa, 2, 395-400. doi: https://doi.org/10.1007/s42250-019-00067-w
  • Patnaik, P. (2003). Handbook of Inorganic Chemicals. New York, McGraw-Hill.
  • Ropp, R.C. (2013). Encyclopedia of the Alkaline Earth Compounds. Amsterdam, Elsevier.
  • Rubio-Caballero, J.M., Santamaría-González, J., Mérida- Robles, J., Moreno-Tost, R., Jiménez-López, A. ve Maireles-Torres, P. (2009). Calcium zincate as precursor of active catalysts for biodiesel production under mild conditions, Applied Catalysis B: Environmental, 91, 339-346. doi: https://dx.doi.org/10.1016/j.apcatb.2009.05.041
  • Ruiz-Agudo, E., Putnis, C.V. ve Rodriguez-Navarro, C. (2008). Interaction between epsomite crystals and organic additives. Crystal Growth & Design, 8, 2665- 2673. doi: https://doi.org/10.1021/cg070442n
  • Scholder, R. ve Weber, H. (1933). Das amphotere verhalten von metallhydroxyden. II. Über zinkate. Zeitschrift für Anorganische und Allgemeine Chemie, 215, 355-368.
  • Setoudeh, N., Welham, N.J. ve Azami, S.M. (2010). Dry mechanochemical conversion of SrSO4 to SrCO3. Journal of Alloys and Compounds, 492, 389-391. doi: https://doi.org/10.1016/j.jallcom.2009.11.114
  • Shamsipur, M., Pourmortazavi, S.M., Hajimirsadeghi, S.S. ve Roushani, M. (2013). Applying Taguchi robust design to the optimization of synthesis of barium carbonate nanorods via direct precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423, 35-41. doi: https://doi.org/10.1016/j.colsurfa.2013.01.042
  • Singerling, S.A. (2017). Strontium - Advance Release. U.S. Geological Survey Minerals Yearbook, 7 sayfa.
  • Sreedhar, B., Satya Vani, Ch., Keerthi Devi, D., Sreeram, V. ve Basaveswar Rao, M.V. (2012). Biomimetic mineralization of BaCO3 microstructures by simple CO2 diffusion method. American Journal of Materials Science, 2, 105-109. doi: https://doi.org/10.5923/j.materials.20120204.02
  • Stahl, R. ve Jacobs, H. (1998a). Synthese und kristallstruktur von Sr2Zn(OH)6 und Ba2Zn(OH)6. Zeitschrift für Anorganische und Allgemeine Chemie, 624, 17-20. doi: https://doi.org/10.1002/zaac.19976230816
  • Stahl, R. ve Jacobs, H. (1998b). Synthese und kristallstruktur von BaZn(OH)4·H2O. Zeitschrift für Anorganische und Allgemeine Chemie, 624, 21-24. doi: https://doi.org/10.1002/zaac.19976230167
  • Suárez-Orduña, R., Rendón-Angeles, J.C., López-Cuevas, J. ve Yanagisawa, K. (2004). The conversion of mineral celestite to strontianite under alkaline hydrothermal conditions. Journal of Physics: Condensed Matter, 16, S1331-S1344. doi: https://doi.org/10.1088/0953- 8984/16/14/046
  • Uekawa, N., Yamashita, R., Wu, Y.J. ve Kakegawa, K. (2004). Effect of alkali metal hydroxide on formation processes of zinc oxide crystallites from aqueous solutions containing Zn(OH)42− ions. Physical Chemistry Chemical Physics, 6, 442-446. doi: https://doi.org/10.1039/B310306D
  • Wang, R., Yang, Z., Yang, B., Fan, X. ve Wang, T. (2014). A novel alcohol-thermal synthesis method of calcium zincates negative electrode materials for Ni-Zn secondary batteries, Journal of Power Sources, 246, 313-321. doi: http://dx.doi.org/10.1016/j.jpowsour.2013.07.097
  • Xu, J. ve Xue. D. (2006). Chemical synthesis of BaCO3 with a hexagonal pencil-like morphology. Journal of Physics and Chemistry of Solids, 67, 1427-1431. doi: https://doi.org/10.1016/j.jpcs.2006.01.105
  • Yan, F., Zhang, X., Asselin, E., Duan, D. ve Li, Z. (2021). Preparation of strontium carbonate via celestite leaching in NaHCO3 using two interconnected reactors. Hydrometallurgy, 204, 105729. doi: https://doi.org/10.1016/j.hydromet.2021.105729
  • Zagada-Dominguez, U., de la Rosa-García, S., Ruiz- Gómez, M., López-González, R., Soria-Castro, M., Quintana, P. ve Gómez-Cornelio, S. (2020) Photocatalytic and antifungal activity of CaZn2(OH)6·2H2O mixed with Ca(OH)2 for its application in cultural heritage, Journal of Photochemistry & Photobiology A: Chemistry, 392, 112440. doi: https://doi.org/10.1016/j.jphotochem.2020.112440
  • Zhang, Q. ve Saito, F. (1997), Non-thermal production of barium carbonate from barite by means of mechanochemical treatment. Journal of Chemical Engineering of Japan, 30, 724-727. doi: https://doi.org/10.1252/jcej.30.724
APA Ehsani I, Ehsani A, Obut A (2022). BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. , 211 - 219. 10.31796/ogummf.1022705
Chicago Ehsani Ilhan,Ehsani Arman,Obut Abdullah BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. (2022): 211 - 219. 10.31796/ogummf.1022705
MLA Ehsani Ilhan,Ehsani Arman,Obut Abdullah BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. , 2022, ss.211 - 219. 10.31796/ogummf.1022705
AMA Ehsani I,Ehsani A,Obut A BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. . 2022; 211 - 219. 10.31796/ogummf.1022705
Vancouver Ehsani I,Ehsani A,Obut A BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. . 2022; 211 - 219. 10.31796/ogummf.1022705
IEEE Ehsani I,Ehsani A,Obut A "BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ." , ss.211 - 219, 2022. 10.31796/ogummf.1022705
ISNAD Ehsani, Ilhan vd. "BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ". (2022), 211-219. https://doi.org/10.31796/ogummf.1022705
APA Ehsani I, Ehsani A, Obut A (2022). BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), 30(2), 211 - 219. 10.31796/ogummf.1022705
Chicago Ehsani Ilhan,Ehsani Arman,Obut Abdullah BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online) 30, no.2 (2022): 211 - 219. 10.31796/ogummf.1022705
MLA Ehsani Ilhan,Ehsani Arman,Obut Abdullah BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), vol.30, no.2, 2022, ss.211 - 219. 10.31796/ogummf.1022705
AMA Ehsani I,Ehsani A,Obut A BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online). 2022; 30(2): 211 - 219. 10.31796/ogummf.1022705
Vancouver Ehsani I,Ehsani A,Obut A BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ. Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online). 2022; 30(2): 211 - 219. 10.31796/ogummf.1022705
IEEE Ehsani I,Ehsani A,Obut A "BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ." Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), 30, ss.211 - 219, 2022. 10.31796/ogummf.1022705
ISNAD Ehsani, Ilhan vd. "BARYUM VE MAGNEZYUM İÇEREN KATILARIN KARBONAT YÜKLÜ ÇÖZELTİLERLE ETKİLEŞİMİ". Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online) 30/2 (2022), 211-219. https://doi.org/10.31796/ogummf.1022705