Yıl: 2021 Cilt: 7 Sayı: 3 Sayfa Aralığı: 277 - 285 Metin Dili: Türkçe DOI: 10.30855/gmbd.2021.03.10 İndeks Tarihi: 06-09-2022

Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi

Öz:
Bu çalışmada, nokta direnç kaynak yöntemi ile birleştirilen geliştirilmiş yüksek mukavemetli çeliğin kaynak çekirdek çapı, çekme makaslama dayanımı ve mikrosertlik özellikleri üzerinde farklı elektrot uç tiplerinin etkisi incelenmiştir. Bu amaçla, özellikle otomotiv sektöründe tercih edilen konik yuvarlak, düz R3, düz R6 ve düz konik elektrot uçlar kullanılarak nokta direnç kaynaklı birleşimler gerçekleştirilmiştir. Deney numuneleri, kaynak çekirdeği geometrisi makro-mikro incelemesi, mekanik ve metalürjik incelemelere tabi tutulmuştur. Deneysel sonuçlar kaynak çekirdek çap değeri, mikro sertlik sonuçları ve çekme makaslama dayanım değerleri arasında doğrusal bir ilişki olduğunu göstermiştir. Düz 3 mm yarıçap uçlu elektrotlar ile en yüksek, düz konik uçlu elektrotlar ile en düşük çekme makaslama dayanım değerleri elde edilmiştir.
Anahtar Kelime: Nokta direnç kaynağı elektrot uç tipi kaynak çekirdek çapı çekme makaslama dayanımı mikrosertlik

Investigation of the Effect of the Electrode Tip Type on the Mechanical Properties of Advanced High Strength Steel Combined with Resistance Spot Welding

Öz:
In this study, the effect of different electrode tip types on weld nugget diameter, tensile shear strength and microhardness properties of advanced high strength steel combined with resistance spot welding method was investigated. For this purpose, resistance spot welded joints were performed using conical round, flat R3, flat R6 and flat conical electrode tips, which are preferred especially in the automotive industry. Test samples were subjected to weld nugget geometry macro-micro examination, mechanical and metallurgical investigations. Experimental results showed that there is a linear relationship between weld nugget diameter value, microhardness results and tensile shear strength values. The highest tensile shear strength values were obtained with flat 3 mm radius tip electrodes, and the lowest tensile shear strength values with flat conical tip electrodes.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] B. Wang, L. Hua, X. Wang, Y. Song and Y. Liu, "Effects of electrode tip morphology on resistance spot welding quality of DP590 dual-phase steel," The International Journal of Advanced Manufacturing Technology, vol. 83, no. 9–12, pp. 1917–1926, April 2016. doi: 10.1007/s00170-015-7703-0
  • [2] S. Donders, M. Brughmans, L. Hermans and N. Tzannetakis, "The effect of spot weld failure on dynamic vehicle performance," Sound and Vibration, vol. 39, no. 4, pp. 16–25, April 2005.
  • [3] A. De, "Spot welding," Science and Technology of Welding and Joining, vol. 13, no. 3, pp. 213–214, 2008. doi: 10.1179/174329308X326318
  • [4] A. Alzahougi, M. Elitas and B. Demir, "RSW junctions of advanced automotive sheet steel by using different electrode pressures," Engineering, Technology & Applied Science Research, vol. 8, no. 5, pp. 3492–3495, October 2018. doi: 10.48084/etasr.2342
  • [5] M. Elitas and B. Demir, "The effects of the welding parameters on tensile properties of RSW junctions of DP1000 sheet steel," Engineering, Technology & Applied Science Research, vol. 8, no. 4, pp. 3116–3120, August 2018. doi: 10.48084/etasr.2115
  • [6] D. K. Matlock, J. G. Speer, E. De Moor and P. J. Gibbs, "Recent developments in advanced high strength sheet steels for automotive applications: an overview," Jestech, vol. 15, no. 1, pp. 1–12, January 2012.
  • [7] D. K. Matlock and J. G. Speer, Microstructure and Texture in Steels: Third generation of AHSS microstructure design concepts. London, Springer, 2009, pp. 185–205.
  • [8] E. De Moor, P. J. Gibbs, J. G. Speer, D. K. Matlock and J. G. Schroth, "AIST transactions strategies for third-generation advanced high-strength steel development," Iron & Steel Technology, vol. 7, no. 11, pp. 133-144, November 2010.
  • [9] M. Pouranvari, A. Abedi, P. Marashi and M. Goodarzi, "Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds," Science and Technology of Welding and Joining, vol. 13, no. 1, pp. 39–43, 2008. doi: 10.1179/174329307X249342
  • [10] S. M. Zuniga, "Predicting overload pull-out failures in resistance spot welded joints," Ph.D. dissertation, Stanford Univ., Stanford, USA, 1995.
  • [11] H. Zhang and J. Senkara, Resistance Welding Fundamentals and Applications. Boca Raton, CRC Press, 2011.
  • [12] M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi and M. Goodarzi, "Effect of weld nugget size on overload failure mode of resistance spot welds," Science and Technology of Welding and Joining, vol. 12, no. 3, pp. 217–225, 2007. doi: 10.1179/174329307X164409
  • [13] P. C. Lin, S. H. Lin and J. Pan, "Modeling of failure near spot welds in lap-shear specimens based on a plane stress rigid inclusion analysis," Engineering Fracture Mechanics, vol. 73, no. 15, pp. 2229–2249, October 2006. doi: 10.1016/j.engfracmech.2006.03.017
  • [14] X. Sun, E. V. Stephens and M. A. Khaleel, "Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions," Engineering Failure Analysis, vol. 15, no. 4, pp. 356– 367, June 2008. doi: 10.1016/j.engfailanal.2007.01.018
  • [15] X. Sun, E. V. Stephens and M. A. Khaleel, "Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high-strength steel spot welds," Welding Journal, vol. 86, no. 1, pp. 18-25, January 2007.
  • [16] J. Nieto, M. P. Guerrero-Mata, R. Colas and A. Mani, "Experimental investigation on resistance spot welding of galvannealed HSLA steel," Science and Technology of Welding and Joining, vol. 11, no. 6, pp. 717–722, 2006. doi: 10.1179/174329306X153187
  • [17] X. Sun, E. V. Stephens, R. W. Davies, M. Khaleel and D. J. Spinella, "Effects of fusion zone size on failure modes and static strength of aluminum resistance spot welds," Welding Journal, vol. 83, no. 11, pp. 308-318, November 2004.
  • [18] M. Pouranvari and S. P. H. Marashi, "Critical sheet thickness for weld nugget growth during resistance spot welding of three-steel sheets," Science and Technology of Welding and Joining, vol. 16, no. 2, pp. 162–165, 2011. doi: 10.1179/1362171810Y.0000000016
  • [19] S. Sam and M. Shome, "Static and fatigue performance of weld bonded dual phase steel sheets," Science and Technology of Welding and Joining, vol. 15, no. 3, pp. 242–247, 2010. doi: 10.1179/136217110X12665778348461
  • [20] M. I. Khan, M. L. Kuntz, P. Su, A. Gerlich, T. North and Y. Zhou, "Resistance and friction stir spot welding of DP600: a comparative study," Science and Technology of Welding and Joining, vol. 12, no. 2, pp. 175–182, 2007. doi: 10.1179/174329307X159801
  • [21] O. N. P. O. S. Varjenja, P. U. To, K. V. Naprednega and F. M. V. T. Jekla, "Dependence of the fracture mode on the welding variables in the resistance spot welding of ferrite-martensite DP980 advanced high-strength steel," Materiali In Tehnologije, vol. 46, no. 6, pp. 665–671, 2012.
  • [22] A. De, O. P. Gupta and L. Dorn, "An experimental study of resistance spot welding in 1 mm thick sheet of low carbon steel," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 210, no. 4, pp. 341– 347, August 1996. doi: 10.1243/PIME_PROC_1996_210_126_02
  • [23] G. Mukhopadhyay, S. Bhattacharya and K. K. Ray, "Strength assessment of spot-welded sheets of interstitial free steels," Journal of Materials Processing Technology, vol. 209, no. 4, pp. 1995– 2007, February 2009. doi: 10.1016/j.jmatprotec.2008.04.065
  • [24] K. R. Pedersen, A. Harthøj, K. L. Friis, N. Bay, M. A. Somers and W. Zhang, "Microstructure and hardness distribution of resistance welded advanced high strength steels," in 5th International Seminar on Advances in Resistance Welding, 24-26 August 2008, Toronto, Canada [Online]. Available: DTU Orbit, https://orbit.dtu.dk/en/ [Accessed: 08 Oct. 2021].
  • [25] M. Pouranvari and S. P. H. Marashi, "Critical review of automotive steels spot welding: process, structure and properties," Science and Technology of Welding and Joining, vol. 18, no. 5, pp. 361–403, 2013. doi: 10.1179/1362171813Y.0000000120
  • [26] Z. Duan, Y. Li, M. Zhang, M. Shi, F. Zhu and S. Zhang, "Effects of quenching process on mechanical properties and microstructure of high strength steel", Journal of Wuhan University of Technology-Mater. Sci. Ed., vol. 27, no. 6, pp. 1024–1028, December 2012. doi: 10.1007/s11595-012-0593-1
  • [27] N. A. Özbek and E. Saraç, "Effects of tempering heat treatment temperatures on mechanical properties of carbon steels," Gazi Journal of Engineering Sciences (GJES), vol. 7, no. 1, pp. 17–25, April 2021. doi: 10.30855/gmbd.2021.01.03
  • [28] H. Gökçe, "Modelling and optimization for thrust force, temperature and burr height in drilling of custom 450," Experimental Techniques, pp. 1–15, September 2021. doi: 10.1007/s40799-021-00510-z
  • [29] H. Yang, X. Lai, Y. Zhang and G. Chen, "Investigations on the weldability of high-strength steels sheet to cylindrical tube single-sided spot welding," The International Journal of Advanced Manufacturing Technology, vol. 49, no. 5–8, pp. 513– 518, November 2009. doi: 10.1007/s00170-009-2418-8
  • [30] M. Eshraghi, M. A. Tschopp, M. A. Zaeem and S. D. Felicelli, "Effect of resistance spot welding parameters on weld pool properties in a DP600 dual- phase steel: a parametric study using thermomechanically-coupled finite element analysis," Materials & Design, vol. 56, pp. 387–397, April 2014. doi: 10.1016/j.matdes.2013.11.026
  • [31] S. Frydman and G. Pękalski, "Structure and hardness changes in welded joints of Hardox steels," Archives of Civil and Mechanical Engineering, vol. 8, no. 4, pp. 15–27, 2008. doi: 10.1016/S1644-9665(12)60118-6
  • [32] C. W. Ziemian, M. M. Sharma and D. E. Whaley, "Effects of flashing and upset sequences on microstructure, hardness, and tensile properties of welded structural steel joints," Materials & Design, vol. 33, pp. 175–184, January 2012. doi: 10.1016/j.matdes.2011.07.026
  • [33] R. W. Rathbun, D. K. Matlock and J. G. Speer, "Fatigue behavior of spot welded high-strength sheet steels," Welding Journal, vol. 82, no. 8, pp. 207–218, August 2003.
  • [34] T. B. Hilditch, J. y Speer and D. K. Matlock, "Effect of susceptibility to interfacial fracture on fatigue properties of spot-welded high strength sheet steel", Materials & Design, vol. 28, no. 10, pp. 2566– 2576, December 2006. doi: 10.1016/j.matdes.2006.10.019
  • [35] M. H. Swellam, G. B. Aś and F. V. Lawrence, "A fatigue design parameter for spot welds," Fatigue & Fracture of Engineering Materials & Structures, vol. 17, no. 10, pp. 1197–1204, October 1994. doi: 10.1111/j.1460-2695.1994.tb01408.x
  • [36] X. Long and S. K. Khanna, "Fatigue properties and failure characterization of spot-welded high strength steel sheet," International Journal of Fatigue, vol. 29, no. 5, pp. 879–886, May 2007. doi: 10.1016/j.ijfatigue.2006.08.003
  • [37] Y. S. Yang, K. J. Son, S. K. Cho, S. G. Hong, S. K. Kim and K. H. Mo, "Effect of residual stress on fatigue strength of resistance spot weldment," Science and Technology of Welding and Joining, vol. 6, no. 6, pp. 397–401, 2001. doi: 10.1179/stw.2001.6.6.397
  • [38] J. Xu, Y. S. Zhang, L. Xinmin and G. L. Chen, "Experimental investigation of fatigue performance of spot welded dual phase sheet steels," Science and Technology of Welding and Joining, vol. 13, no. 8, pp. 726–731, 2008. doi: 10.1179/174329307X236841
  • [39] X. Long and S. K. Khanna, "Fatigue performance of spot welded and weld bonded advanced high strength steel sheets," Science and Technology of Welding and Joining, vol. 13, no. 3, pp. 241–247, 2008. doi: 10.1179/174329307X249379
  • [40] S. Daneshpour, S. Riekehr, M. Kocak and C. H. J. Gerritsen, "Mechanical and fatigue behaviour of laser and resistance spot welds in advanced high strength steels," Science and Technology of Welding and Joining, vol. 14, no. 1, pp. 20–25, 2009. doi: 10.1179/136217108X336298
  • [41] H. Gaul, G. Weber and M. Rethmeier, "Influence of HAZ cracks on fatigue resistance of resistance spot welded joints made of advanced high strength steels," Science and Technology of Welding and Joining, vol. 16, no. 5, pp. 440–445, 2011. doi: 10.1179/1362171810Y.0000000031
  • [42] S. Daneshpour, A. H. Kokabi, A. A. Ekrami and A. K. Motarjemi, "Crack initiation and kinking behaviours of spot welded coach peel specimens under cyclic loading," Science and Technology of Welding and Joining, vol. 12, no. 8, pp. 696–702, 2007. doi: 10.1179/174329307X238416
  • [43] P. Wung, T. Walsh, A. Ourchane, W. Stewart and M. Jie, "Failure of spot welds under in-plane static loading," Experimental Mechanics, vol. 41, no. 1, pp. 100–106, March 2001.
  • [44] M. Pouranvari and S. P. H. Marashi, "Failure of resistance spot welds: tensile shear versus coach peel loading conditions," Ironmaking & Steelmaking, vol. 39, no. 2, pp. 104–111, 2012. doi: 10.1179/1743281211Y.0000000066
  • [45] M. Pouranvari and S. P. H. Marashi, "Failure mode transition in AISI 304 resistance spot welds", Welding Journal, vol. 91, no. 11, pp. 303–309, November 2012.
  • [46] M. Pouranvari and S. P. H. Marashi, "Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors," Materials Science and Engineering: A, vol. 528, no. 29–30, pp. 8337–8343, November 2011. doi: 10.1016/j.msea.2011.08.017
  • [47] M. Pouranvari, S. P. H. Marashi and D. S. Safanama, "Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation," Materials Science and Engineering: A, vol. 528, no. 29–30, pp. 8344–8352, November 2011. doi: 10.1016/j.msea.2011.08.016
  • [48] C. Ma, D. L. Chen, S. D. Bhole, G. Boudreau, A. Lee and E. Biro, "Microstructure and fracture characteristics of spot-welded DP600 steel," Materials Science and Engineering: A, vol. 485, no. 1–2, pp. 334–346, June 2008. doi: 10.1016/j.msea.2007.08.010
  • [49] M. I. Khan, M. L. Kuntz, E. Biro and Y. Zhou, "Microstructure and mechanical properties of resistance spot welded advanced high strength steels," Materials Transactions, vol. 49, no. 7, pp. 1629-1637, July 2008. doi: 10.2320/matertrans.MRA2008031
  • [50] H. Zhang, A. Wei, X. Qiu and J. Chen, "Microstructure and mechanical properties of resistance spot welded dissimilar thickness DP780/DP600 dual-phase steel joints," Materials & Design, vol. 54, pp. 443–449, February 2014. doi: 10.1016/j.matdes.2013.08.027
APA demir B, ELİTAŞ M, KARAKUŞ H (2021). Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. , 277 - 285. 10.30855/gmbd.2021.03.10
Chicago demir BİLGE,ELİTAŞ Muhammed,KARAKUŞ Hüseyin Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. (2021): 277 - 285. 10.30855/gmbd.2021.03.10
MLA demir BİLGE,ELİTAŞ Muhammed,KARAKUŞ Hüseyin Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. , 2021, ss.277 - 285. 10.30855/gmbd.2021.03.10
AMA demir B,ELİTAŞ M,KARAKUŞ H Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. . 2021; 277 - 285. 10.30855/gmbd.2021.03.10
Vancouver demir B,ELİTAŞ M,KARAKUŞ H Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. . 2021; 277 - 285. 10.30855/gmbd.2021.03.10
IEEE demir B,ELİTAŞ M,KARAKUŞ H "Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi." , ss.277 - 285, 2021. 10.30855/gmbd.2021.03.10
ISNAD demir, BİLGE vd. "Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi". (2021), 277-285. https://doi.org/10.30855/gmbd.2021.03.10
APA demir B, ELİTAŞ M, KARAKUŞ H (2021). Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi, 7(3), 277 - 285. 10.30855/gmbd.2021.03.10
Chicago demir BİLGE,ELİTAŞ Muhammed,KARAKUŞ Hüseyin Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi 7, no.3 (2021): 277 - 285. 10.30855/gmbd.2021.03.10
MLA demir BİLGE,ELİTAŞ Muhammed,KARAKUŞ Hüseyin Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi, vol.7, no.3, 2021, ss.277 - 285. 10.30855/gmbd.2021.03.10
AMA demir B,ELİTAŞ M,KARAKUŞ H Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi. 2021; 7(3): 277 - 285. 10.30855/gmbd.2021.03.10
Vancouver demir B,ELİTAŞ M,KARAKUŞ H Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi. Gazi Mühendislik Bilimleri Dergisi. 2021; 7(3): 277 - 285. 10.30855/gmbd.2021.03.10
IEEE demir B,ELİTAŞ M,KARAKUŞ H "Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi." Gazi Mühendislik Bilimleri Dergisi, 7, ss.277 - 285, 2021. 10.30855/gmbd.2021.03.10
ISNAD demir, BİLGE vd. "Nokta Direnç Kaynağı ile Birleştirilen Geliştirilmiş Yüksek Mukavemetli Çeliğin Mekanik Özellikleri Üzerinde Elektrod Uç Tipinin Etkisinin İncelenmesi". Gazi Mühendislik Bilimleri Dergisi 7/3 (2021), 277-285. https://doi.org/10.30855/gmbd.2021.03.10