Yıl: 2021 Cilt: 7 Sayı: 3 Sayfa Aralığı: 320 - 329 Metin Dili: İngilizce DOI: 10.30855/gmbd.2021.03.14 İndeks Tarihi: 06-09-2022

Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract

Öz:
Plant based materials and extracts have gained an increased importance for biosynthesis of metallic nanoparticles. Biosynthesis offers an economical and environmentally friendly pathway for nanoparticle synthesis. When done with plant extracts, beneficial phytochemicals get absorbed on the nanoparticles and provide functionality. In this study, we have used simple water extracts of myrtle and grape seed to facilitate the synthesis of silver nanoparticles. The nanoparticles were characterized via UV-Vis spectroscopy, XRD, SEM and Raman spectroscopy. Average size of 10-30 nm spherical particles were obtained. The antibacterial activity of the nanoparticles were tested on Gram-positive and Gram-negative model organisms. Biosynthesized nanoparticles showed superior antibacterial activity compared to conventionally synthesized nanoparticles or soluble plant extracts.
Anahtar Kelime: Biosynthesis Silver Nanoparticles Myrtus communis Grapeseed Antibacterial

Myrtus communis (Mersin) ve Üzüm Çekirdeği Özütü Kullanılarak Gümüş Nanoparçacık Biyosentezi ve Karakterizasyonu

Öz:
Bitkisel malzemeler ve özütlerin, metal nanoparçacıkların biyosentezinde önemleri giderek artmaktadır. Biyosentez, nanoparçacık sentezinde hem ekonomik, hem de çevreye zararsız bir yolak sunmaktadır. Bitki özütleri ile yapıldığında, faydalı fitokimyasallar nanoparçacık yüzeyine tutunmakta ve nanoparçacığa işlevsellik kazandırmaktadır. Bu çalışmada, mersin yaprağı ve üzüm çekirdeğinin basit sulu özütleri kullanılarak gümüş nanoparçacıkları sentezlenmiştir. Nanoparçacıklar UV-Vis spektrofotometri, XRD, SEM ve Raman spektrofotometrisi ile karakterize edilmiştir. Ortalama boyu 10-30 nm olan küre parçacıklar elde edilmiştir. Nanoparçacıkların antibakteriyel etkisi Gram-pozitif ve Gram-negatif model organizmalarda test edilmiştir. Biyosentezle üretilen nanoparçacıkların, gelenksel yöntemle sentezlenen nanoparçacıklara veya bitki özütlerinin sulu çözeltilerine göre çok daha yüksek antibakteriyel aktivite gösterdikleri belirlenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] X.-F. Zhang, Z.-G. Liu, W. Shen, and S. Gurunathan, "Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches," (in eng), Int J Mol Sci, vol. 17, no. 9, pp. 1534, 2016. doi: 10.3390/ijms17091534.
  • [2] J. W. Alexander, "History of the Medical Use of Silver," Surgical Infections, vol. 10, no. 3, pp. 289- 292, 2009. doi: 10.1089/sur.2008.9941.
  • [3] H. J. Klasen, "Historical review of the use of silver in the treatment of burns. I. Early uses," Burns, vol. 26, no. 2, pp. 117-130, 2000/03/01/ 2000. doi: 10.1016/S0305-4179(99)00108-4.
  • [4] A. B. G. Lansdown, "Silver in Medical Devices: Technology and Antimicrobial Efficacy," in Silver in Healthcare: Its Antimicrobial Efficacy and Safety in Use: The Royal Society of Chemistry, 2010. pp. 92- 143.
  • [5] S. Chernousova and M. Epple, "Silver as antibacterial agent: ion, nanoparticle, and metal," (in eng), Angew Chem Int Ed Engl, vol. 52, no. 6, pp. 1636-53, Feb 4 2013. doi: 10.1002/anie.201205923.
  • [6] A. Schmidt-Ott, "New approaches to in situ characterization of ultrafine agglomerates," Journal of Aerosol Science, vol. 19, no. 5, pp. 553-563, 1988.
  • [7] D. Tien et al., "Novel technique for preparing a nano-silver water suspension by the arc-discharge method," Rev. Adv. mater. sci, vol. 18, pp. 750-756, 2008.
  • [8] T. Pluym et al., "Solid silver particle production by spray pyrolysis," Journal of aerosol science, vol. 24, no. 3, pp. 383-392, 1993.
  • [9] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, "Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?," Angewandte Chemie International Edition, vol. 48, no. 1, pp. 60-103, 2009, doi: 10.1002/anie.200802248.
  • [10] S. Prabhu and E. K. Poulose, "Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects," International nano letters, vol. 2, no. 1, pp. 1-10, 2012.
  • [11] V. Demchenko et al., "Effect of the type of reducing agents of silver ions in interpolyelectrolyte- metal complexes on the structure, morphology and properties of silver-containing nanocomposites," Scientific Reports, vol. 10, no. 1, p. 7126, 2020/04/28 2020. doi: 10.1038/s41598-020-64079-0.
  • [12] P. Raveendran, J. Fu, and S. L. Wallen, "Completely "Green" Synthesis and Stabilization of Metal Nanoparticles," Journal of the American Chemical Society, Article vol. 125, no. 46, pp. 13940- 13941, 2003. doi: 10.1021/ja029267j.
  • [13] Y. Yin, Z. Y. Li, Z. Zhong, B. Gates, Y. Xia, and S. Venkateswaran, "Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process," Journal of Materials Chemistry, Article vol. 12, no. 3, pp. 522-527, 2002. doi: 10.1039/b107469e.
  • [14] J. P. Abid, A. W. Wark, P. F. Brevet, and H. H. Girault, "Preparation of silver nanoparticles in solution from a silver salt by laser irradiation," Chemical Communications, 10.1039/B200272H no. 7, pp. 792-793, 2002. doi: 10.1039/B200272H.
  • [15] N. M. Dimitrijevic, D. M. Bartels, C. D. Jonah, K. Takahashi, and T. Rajh, "Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane," Journal of Physical Chemistry B, vol. 105, no. 5, pp. 954-959, 2001. doi: 10.1021/jp0028296.
  • [16] V. K. Sharma, R. A. Yngard, and Y. Lin, "Silver nanoparticles: Green synthesis and their antimicrobial activities," Advances in Colloid and Interface Science, vol. 145, no. 1, pp. 83-96, 2009/01/30/ 2009. doi: 10.1016/j.cis.2008.09.002.
  • [17] Mandeep and P. Shukla, "Microbial Nanotechnology for Bioremediation of Industrial Wastewater," (in English), Frontiers in Microbiology, vol. 11, no. 2411, 2020-November-02 2020. doi: 10.3389/fmicb.2020.590631.
  • [18] T. J. Park, K. G. Lee, and S. Y. Lee, "Advances in microbial biosynthesis of metal nanoparticles," Applied Microbiology and Biotechnology, vol. 100, no. 2, pp. 521-534, 2016/01/01 2016. doi: 10.1007/s00253-015-6904-7.
  • [19] S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, "A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise," Journal of Advanced Research, vol. 7, no. 1, pp. 17-28, 2016/01/01/ 2016. doi: 10.1016/j.jare.2015.02.007.
  • [20] G. Vasyliev, V. Vorobyova, M. Skiba, and L. Khrokalo, "Green Synthesis of Silver Nanoparticles Using Waste Products (Apricot and Black Currant Pomace) Aqueous Extracts and Their Characterization," Advances in Materials Science and Engineering, vol. 2020, Article ID. 4505787, 2020. doi: 10.1155/2020/4505787.
  • [21] P. Khandel, R. K. Yadaw, D. K. Soni, L. Kanwar, and S. K. Shahi, "Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects," Journal of Nanostructure in Chemistry, vol. 8, no. 3, pp. 217-254, 2018. doi: 10.1007/s40097-018-0267-4.
  • [22] D. Inbakandan, R. Venkatesan, and S. A. Khan, "Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905)," Colloids and Surfaces B: Biointerfaces, vol. 81, no. 2, pp. 634- 639, 2010.
  • [23] T. Baytop, Therapy with Medicinal Plants in Turkey. Istanbul, Turkey: Istanbul University Press, 1984.
  • [24] V. Aleksic and P. Knezevic, "Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L," Microbiological Research, vol. 169, no. 4, pp. 240-254, 2014/04/01/ 2014. doi: 10.1016/j.micres.2013.10.003.
  • [25] R. Veluri, R. P. Singh, Z. Liu, J. A. Thompson, R. Agarwal, and C. Agarwal, "Fractionation of grape seed extract and identification of gallic acid as one of the major active constituents causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells," Carcinogenesis, vol. 27, no. 7, pp. 1445-1453, 2006. doi: 10.1093/carcin/bgi347.
  • [26] N. Krithiga, A. Rajalakshmi, and A. Jayachitra, "Green Synthesis of Silver Nanoparticles Using Leaf Extracts of <i>Clitoria ternatea</i> and <i>Solanum nigrum</i> and Study of Its Antibacterial Effect against Common Nosocomial Pathogens," Journal of Nanoscience, vol. 2015, p. 928204, 2015/04/09 2015. doi: 10.1155/2015/928204.
  • [27] K. Mavani and M. Shah, "Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent," International Journal of Engineering Research & Technology, vol. 2, no. 3, pp. 1-5, 2013.
  • [28] P. Dalgaard, T. Ross, L. Kamperman, K. Neumeyer, and T. A. McMeekin, "Estimation of bacterial growth rates from turbidimetric and viable count data," International Journal of Food Microbiology, vol. 23, no. 3, pp. 391-404, 1994/11/01/ 1994. doi: 10.1016/0168-1605(94)90165-1.
  • [29] S. Sutton, "Measurement of microbial cells by optical density," Journal of Validation technology, vol. 17, no. 1, pp. 46-49, 2011.
  • [30] K. Stevenson, A. F. McVey, I. B. Clark, P. S. Swain, and T. Pilizota, "General calibration of microbial growth in microplate readers," Scientific reports, vol. 6, no. 1, pp. 1-7, 2016.
  • [31] S. A. Maier, "Surface Plasmon Polaritons at Metal / Insulator Interfaces," in Plasmonics: Fundamentals and Applications. New York, NY: Springer US, pp. 21-37, 2007.
  • [32] S. Agnihotri, S. Mukherji, and S. Mukherji, "Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy," RSC Advances, 10.1039/C3RA44507K vol. 4, no. 8, pp. 3974-3983, 2014. doi: 10.1039/C3RA44507K.
  • [33] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, "The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study," Physical Chemistry Chemical Physics, 10.1039/B103226G vol. 3, no. 17, pp. 3838- 3845, 2001. doi: 10.1039/B103226G.
  • [34] A. Besinis, T. De Peralta, and R. D. Handy, "The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays," (in eng), Nanotoxicology, vol. 8, no. 1, pp. 1-16, Feb 2014. doi: 10.3109/17435390.2012.742935.
  • [35] H. Yang, Y.-y. Ren, T. Wang, and C. Wang, "Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract," Results in Physics, vol. 6, pp. 299-304, 2016/01/01/ 2016. doi: 10.1016/j.rinp.2016.05.012.
  • [36] Y. H., W. K., D. X., Z. G., and G. M., "Study on Relationship Between Antibacterial Property and Silver Ions in Inorganic Antibacterical Powders," Journal of the Chinese Ceramic Society, vol. 30, 2002.
  • [37] X. X. Han, B. Zhao, and Y. Ozaki, "Surface- enhanced Raman scattering for protein detection," Analytical and Bioanalytical Chemistry, vol. 394, no. 7, pp. 1719-1727, Aug 2009. doi: 10.1007/s00216-009-2702-3.
  • [38] J. F. Arenas, I. López-Tocón, J. L. Castro, S. P. Centeno, M. R. López-Ramírez, and J. C. Otero, "Resonant charge transfer on the nanoscale: studying doublet states of adsorbates by surface-enhanced Raman scattering," Journal of Raman Spectroscopy, vol. 36, no. 6-7, pp. 515-521, 2005. doi: 10.1002/jrs.1331.
  • [39] J. Chowdhury, M. Ghosh, and T. N. Misra, "pH- Dependent Surface-Enhanced Raman Scattering of 8-Hydroxy Quinoline Adsorbed on Silver Hydrosol," (in eng), J Colloid Interface Sci, vol. 228, no. 2, pp. 372- 378, Aug 15 2000. doi: 10.1006/jcis.2000.6977.
  • [40] U. P. Agarwal, "1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials," Frontiers in Plant Science, vol. 5, no. 490, 2014-September-23 2014. doi: 10.3389/fpls.2014.00490.
  • [41] J. Chowdhury and M. Ghosh, "Concentration- dependent surface-enhanced Raman scattering of 2- benzoylpyridine adsorbed on colloidal silver particles," Journal of Colloid and Interface Science, vol. 277, no. 1, pp. 121-127, 2004/09/01/ 2004. doi: 10.1016/j.jcis.2004.04.030.
  • [42] A. Sengupta, M. L. Laucks, and E. J. Davis, "Surface-enhanced Raman spectroscopy of bacteria and pollen," Appl Spectrosc, vol. 59, no. 8, pp. 1016- 23, Aug 2005. doi: 10.1366/0003702054615124.
  • [43] A. Campion, "Infrared and Raman Spectroscopy of Biological Materials. Practical Spectroscopy Series. Volume 24 Edited by Hans-Ulrich Gremlich (Novartis Pharma AG, Basel, Switzerland) and Bing Yan (ChemRx Advanced Technologies, Inc., South San Francisco, California). Marcel Dekker: New York and Basel. 2001. xii + 582 pp. $195.00. ISBN 0- 8247-0409-6," Journal of the American Chemical Society, vol. 123, no. 42, pp. 10427-10427, 2001. doi: 10.1021/ja004845m.
  • [44] S. Ding, A. A. Cargill, I. L. Medintz, and J. C. Claussen, "Increasing the activity of immobilized enzymes with nanoparticle conjugation," Current Opinion in Biotechnology, vol. 34, pp. 242-250, 2005. doi: 10.1016/j.copbio.2015.04.005.
  • [45] C. Palocci et al., "Lipolytic Enzymes with Improved Activity and Selectivity upon Adsorption on Polymeric Nanoparticles," Biomacromolecules, vol. 8, no. 10, pp. 3047-3053, 2007. doi: 10.1021/bm070374l.
  • [46] L. Zou et al., "Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production," Scientific Reports, vol. 8, no. 1, p. 11131, 2018. doi: 10.1038/s41598-018-29313-w.
  • [47] S. Ruden, K. Hilpert, M. Berditsch, P. Wadhwani, and A. S. Ulrich, "Synergistic Interaction between Silver Nanoparticles and Membrane- Permeabilizing Antimicrobial Peptides," Antimicrobial Agents and Chemotherapy, vol. 53, no. 8, pp. 3538-3540, 2009. doi: doi:10.1128/AAC.01106-08.
  • [48] K. Aabed and A. E. Mohammed, "Synergistic and Antagonistic Effects of Biogenic Silver Nanoparticles in Combination With Antibiotics Against Some Pathogenic Microbes," Front Bioeng Biotechnol, vol. 9, pp. 652362-652362, 2021. doi: 10.3389/fbioe.2021.652362.
APA Gungormus M (2021). Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. , 320 - 329. 10.30855/gmbd.2021.03.14
Chicago Gungormus Mustafa Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. (2021): 320 - 329. 10.30855/gmbd.2021.03.14
MLA Gungormus Mustafa Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. , 2021, ss.320 - 329. 10.30855/gmbd.2021.03.14
AMA Gungormus M Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. . 2021; 320 - 329. 10.30855/gmbd.2021.03.14
Vancouver Gungormus M Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. . 2021; 320 - 329. 10.30855/gmbd.2021.03.14
IEEE Gungormus M "Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract." , ss.320 - 329, 2021. 10.30855/gmbd.2021.03.14
ISNAD Gungormus, Mustafa. "Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract". (2021), 320-329. https://doi.org/10.30855/gmbd.2021.03.14
APA Gungormus M (2021). Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. Gazi Mühendislik Bilimleri Dergisi, 7(3), 320 - 329. 10.30855/gmbd.2021.03.14
Chicago Gungormus Mustafa Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. Gazi Mühendislik Bilimleri Dergisi 7, no.3 (2021): 320 - 329. 10.30855/gmbd.2021.03.14
MLA Gungormus Mustafa Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. Gazi Mühendislik Bilimleri Dergisi, vol.7, no.3, 2021, ss.320 - 329. 10.30855/gmbd.2021.03.14
AMA Gungormus M Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. Gazi Mühendislik Bilimleri Dergisi. 2021; 7(3): 320 - 329. 10.30855/gmbd.2021.03.14
Vancouver Gungormus M Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract. Gazi Mühendislik Bilimleri Dergisi. 2021; 7(3): 320 - 329. 10.30855/gmbd.2021.03.14
IEEE Gungormus M "Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract." Gazi Mühendislik Bilimleri Dergisi, 7, ss.320 - 329, 2021. 10.30855/gmbd.2021.03.14
ISNAD Gungormus, Mustafa. "Biosynthesis and Characterization of Silver Nanoparticles Using Myrtus Communis (Myrtle) and Grape Seed Extract". Gazi Mühendislik Bilimleri Dergisi 7/3 (2021), 320-329. https://doi.org/10.30855/gmbd.2021.03.14