Yıl: 2022 Cilt: 15 Sayı: 2 Sayfa Aralığı: 28 - 53 Metin Dili: İngilizce İndeks Tarihi: 08-09-2022

Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software

Öz:
In this work, a sonic boom prediction code is developed in order to numerically solve the Augmented Burgers' equation using the operator-splitting approach. The developed code was tested using the near-field pressure data for the “NASA Concept 25D with Flow Through Nacelle (C25D)” geometry and was validated by comparing with the sonic boom predictions obtained from two well-known codes; sBoom and bBoom. A mid-solver approach, which utilizes the open-source CFD software OpenFOAM® and a “Mach-cone aligned” structured mesh, was applied to extrapolate the nearfield pressure data to mid-field. Here, the near-field effects were propagated to mid-field by solving the Euler equations. The Mach-cone aligned mesh used in the solutions does not contain an airplane geometry and it was constructed using the open-source mesh generation software Gmsh in an automated manner. Here the user specifies the radii of the inner and outer surfaces, mesh spacing along with streamwise and circumferential directions and flow Mach number, only. Tests were conducted using the near-field data obtained from an inviscid flow solution for the C25D geometry via the open-source CFD software SU2. These tests showed that the mid-solver approach used in this study can successfully propagate near-field data to mid-field regions.
Anahtar Kelime: Sonic Boom Prediction Augmented Burgers Equation Perceived Loudness Level Extrapolation to mid-field OpenFOAM® SU2

Sonik Patlama Tahmin Programı Geliştirilmesi ve Açık Kaynaklı HAD Yazılımları Ile Sonik Patlama Tahminleri

Öz:
Bu çalışmada, operatör-ayırma yaklaşımı kullanılarak Genişletilmiş Burger denklemini sayısal olarak çözmek için bir sonik patlama tahmin kodu geliştirilmiştir. Geliştirilen kod, “NASA Concept 25D with Flow Through Nacelle (C25D)” geometrisi için elde edilmiş yakın alan basınç verileri kullanılarak test edilmiş ve literatürde sonik patlama konusunda iyi bilinen sBoom ve bBoom kodlarının sonuçları ile karşılaştırılarak doğrulanmıştır. Yakın alan basınç verilerinden orta alandaki basınç değerlerini tahmin edebilmek için, açık kaynaklı bir HAD yazılımı olan OpenFOAM® ve "Mach-konisi hizalı" yapısal bir çözüm ağı kullanan bir orta çözücü yaklaşımı kullanılmıştır. Burada yakın alan basınç verisinin orta alana iletilmesi için Euler denklemleri çözülmüştür. Çözümlerde kullanılan Mach-konisi hizalı ağ, uçak geometrisi içermemektedir ve açık kaynaklı bir ağ üretimi yazılımı olan Gmsh kullanılarak otomatik bir biçimde oluşturulmuştur. Burada kullanıcı yalnızca iç ve dış yüzeylerin yarıçaplarını, akış yönünde ve çevresel yönler boyunca ağ aralığını ve akış Mach sayısını girdi olarak belirlemektedir. Açık kaynaklı bir HAD yazılımı olan SU2 ile, C25D geometrisi için viskoz olmayan bir akış çözümünden elde edilen yakın alan verileri kullanılarak gerçekleştirilen testler sonucunda, kullanılan bu orta çözücü yaklaşımının yakın alan verilerini orta alan bölgelerine başarıyla yayabildiği görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] S. Choi, “Multi-Fidelity and Multi-Disciplinary Design Optimization of Supersonic Business Jets,” Ph.D. dissertation, Aeronautics and Astronautics Dept., University of Stanford, Stanford, USA, 2006.
  • [2] Federal Aviation Adm., Civil Aircraft Sonic Boom Aeronautics and Space, Code of Federal Regulations 14(91), 169-170 (1987).
  • [3] W. Li and S. Rallabhandi, Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets, Journal of Aircraft 51(1), 29-36 (2014).
  • [4] Y. Zhang, J. Huang, G. A. O. Zhenghong, W. A. N. G. Chao and S. H. U. Bowen, Inverse Design of Low Boom Configurations Using Proper Orthogonal Decomposition and Augmented Burgers Equation, Chinese Journal of Aeronautics 32(6), 1380-1389 (2019).
  • [5] I. Ordaz and W. Li, “Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure,” in 31st AIAA Applied Aerodynamics Conference, San Diego, CA, USA, June 24-27, 2013. pp. 2660.
  • [6] K. Plotkin and J. Page, “Extrapolation of Sonic Boom Signatures From CFD Solutions,” in 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, January 14-17, 2002. pp. 922.
  • [7] I. S. El Din, G. Carrier, R. Grenon, M. C. Le Pape and A. Minelli, “Overview of Sonic boom CFD prediction methodology in use at ONERA and its application to Supersonic Business Jet configuration design,” presented at 11th ONERA-DLR Aerospace Symposium, ODAS 2011, Toulouse, France, February 9-11, 2011.
  • [8] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk and J. J. Alonso, SU2: An Open-Source Suite for Multiphysics Simulation and Design, AIAA Journal 54(3), 828-846 (2015).
  • [9] C. L. Thomas, Extrapolation of Sonic Boom Pressure Signatures by the Waveform Parameter Method, NASA TN D-6832, 1972.
  • [10] K. J. Plotkin, State of the art of sonic boom modeling, The Journal of the Acoustical Society of America 111(1), 530–553 (2002).
  • [11] S. K. Rallabhandi, Advanced Sonic Boom Prediction Using the Augmented Burgers' Equation, Journal of Aircraft 48(4), 1245–1253 (2011).
  • [12] R. O. Cleveland, “Propagation of Sonic Booms Through a Real, Stratified Atmosphere,” Ph.D. dissertation, Mechanical Engineering Dept., The University of Texas at Austin, Austin, TX, USA, 1995.
  • [13] J. L. Qiao, Z. Han, W. Song, and B. F. Song, “Development of Sonic Boom Prediction Code for Supersonic Transports Based on Augmented Burgers' Equation,” in AIAA Aviation 2019 Forum, Dallas, TX, USA, June 17-21, 2019. pp. 3571
  • [14] M. Yamamoto, A. Hashimoto, T. Aoyama, and T. Sakai, A unified approach to an augmented Burgers' equation for the propagation of sonic booms, The Journal of the Acoustical Society of America 137(4), 1857-1866 (2015).
  • [15] N. Allahverdi, A. Pozo and E. Zuazua, Numerical aspects of sonic-boom minimization, A Panorama of Mathematics: Pure and Applied 658, 267-279 (2016).
  • [16] H. Shen and D. Lazzara, “A Space Marching Method for Sonic Boom Near Field Predictions,” in 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, January 4-8, 2016. pp. 2037.
  • [17] J. A. Housman, G. K. Kenway, J. C. Jensen and C. C. Kiris, “Efficient Near-Field to Mid-Field Sonic Boom Propagation using a High-Order Space Marching Method,” in AIAA Aviation 2019 Forum, Dallas, TX, USA, June17-21 2019. pp. 3487.
  • [18] A. Loseille, Metric-orthogonal Anisotropic Mesh Generation, Procedia Engineering 82, 403-415 (2014).
  • [19] A. Loseille, Unstructured Mesh Generation and Adaptation, in Handbook of Numerical Analysis 18, 263-302 (2017).
  • [20] https://pyamg.saclay.inria.fr/pyamg.html. [Accessed: June 07, 2022].
  • [21] F. Alauzet and A. Loseille, High-order sonic boom modeling based on adaptive methods, Journal of Computational Physics 229(3), 561-593 (2010).
  • [22] D. Luquet, R. Marchiano, F. Coulouvrat, I. Salah El Din and A. Loseille, “Sonic Boom Assessment of a Hypersonic Transport Vehicle with Advanced Numerical Methods,” in 21st AIAA/CEAS Aeroacoustics Conference,, Dallas, TX, USA, June 22-26, 2015. pp. 2685.
  • [23] A. Loseille, L. Frazza, and F. Alauzet, Comparing anisotropic adaptive strategies on the Second AIAA Sonic Boom Workshop geometry, Journal of Aircraft 56(3), 938-952 (2019).
  • [24] https://openfoam.org/ [Accessed: June 07, 2022].
  • [25] H. E. Bass, L. C. Sutherland and A. J. Zuckerwar, Atmospheric absorption of sound: Update, The Journal of the Acoustical Society of America 88(4), 2019-2021, (1990).
  • [26] H. E. Bass, L. C. Sutherland, A. J. Zuckerwar, D. T. Blackstock and D. M. Hester, Atmospheric absorption of sound: Further developments, The Journal of the Acoustical Society of America 97(1), 680-683, (1995).
  • [27] R. O. Onyeonwu, “The effects of wind and temperature gradients on sonic boom corridors,” Technical Note, Toronto Univ., Downsview, Ontario, Canada, 1971.
  • [28] S. C. Chapra and R. P. Canale, Numerical methods for engineers, Boston: McGraw-Hill Higher Education, 2010.
  • [29] W. D. Hayes and H. L. Runyan Jr, Sonic-boom propagation through a stratified atmosphere, The Journal of the Acoustical Society of America 51(2C), 695-701 (1972).
  • [30] B. Engquist, and S. Osher, One-sided difference approximations for nonlinear conservation laws, Mathematics of Computation 36(154), 321-351 (1981).
  • [31] K. A. Hoffmann and S. T. Chiang Computational fluid dynamics volume I. Wichita: Engineering Education System, 2000.
  • [32] S. S. Stevens, Perceived level of noise by Mark VII and decibels (E), The Journal of the Acoustical Society of America 51(2B), 575-601 (1972).
  • [33] C. R. Bolander, D. F. Hunsaker, H. Shen and F. L. Carpenter, “Procedure for the Calculation of the Perceived Loudness of Sonic Booms,” in AIAA Scitech 2019 Forum, San Diego, CA, USA, January 7-11, 2019. pp. 2091.
APA Alpman E, Kavurmacioglu L, Eken S, İNCİ H, ÇAMUR Z, Biçer B (2022). Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. , 28 - 53.
Chicago Alpman Emre,Kavurmacioglu Levent,Eken Seher,İNCİ Harun,ÇAMUR Zeliha,Biçer Barış Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. (2022): 28 - 53.
MLA Alpman Emre,Kavurmacioglu Levent,Eken Seher,İNCİ Harun,ÇAMUR Zeliha,Biçer Barış Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. , 2022, ss.28 - 53.
AMA Alpman E,Kavurmacioglu L,Eken S,İNCİ H,ÇAMUR Z,Biçer B Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. . 2022; 28 - 53.
Vancouver Alpman E,Kavurmacioglu L,Eken S,İNCİ H,ÇAMUR Z,Biçer B Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. . 2022; 28 - 53.
IEEE Alpman E,Kavurmacioglu L,Eken S,İNCİ H,ÇAMUR Z,Biçer B "Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software." , ss.28 - 53, 2022.
ISNAD Alpman, Emre vd. "Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software". (2022), 28-53.
APA Alpman E, Kavurmacioglu L, Eken S, İNCİ H, ÇAMUR Z, Biçer B (2022). Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. Havacılık ve Uzay Teknolojileri Dergisi, 15(2), 28 - 53.
Chicago Alpman Emre,Kavurmacioglu Levent,Eken Seher,İNCİ Harun,ÇAMUR Zeliha,Biçer Barış Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. Havacılık ve Uzay Teknolojileri Dergisi 15, no.2 (2022): 28 - 53.
MLA Alpman Emre,Kavurmacioglu Levent,Eken Seher,İNCİ Harun,ÇAMUR Zeliha,Biçer Barış Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. Havacılık ve Uzay Teknolojileri Dergisi, vol.15, no.2, 2022, ss.28 - 53.
AMA Alpman E,Kavurmacioglu L,Eken S,İNCİ H,ÇAMUR Z,Biçer B Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. Havacılık ve Uzay Teknolojileri Dergisi. 2022; 15(2): 28 - 53.
Vancouver Alpman E,Kavurmacioglu L,Eken S,İNCİ H,ÇAMUR Z,Biçer B Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software. Havacılık ve Uzay Teknolojileri Dergisi. 2022; 15(2): 28 - 53.
IEEE Alpman E,Kavurmacioglu L,Eken S,İNCİ H,ÇAMUR Z,Biçer B "Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software." Havacılık ve Uzay Teknolojileri Dergisi, 15, ss.28 - 53, 2022.
ISNAD Alpman, Emre vd. "Sonic Boom Prediction Code Development and Sonic Boom Predictions via Open-Source CFD Software". Havacılık ve Uzay Teknolojileri Dergisi 15/2 (2022), 28-53.