Yıl: 2022 Cilt: 15 Sayı: 2 Sayfa Aralığı: 74 - 93 Metin Dili: İngilizce İndeks Tarihi: 08-09-2022

Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor

Öz:
In this study, an integrated adaptive TRIAD/Extended Kalman Filter (EKF) attitude estimation system is presented, in which the TRIAD and an adaptive EKF are combined to estimate the attitude of a nanosatellite. As the first step of the system, the TRIAD algorithm produces an initial coarse quaternion estimation by using magnetometer and sun sensor measurements, and then, this coarse estimation is directly fed to the adaptive EKF. This direct input of the attitude information to the filter relatively reduces the computational burden that an EKF brings. As the second step of the system, adaptive EKF filters the TRIAD solution and gives the final quaternion estimation. At the same time, the adaptive EKF readjusts the measurement noise covariance matrix by using a single scaling factor (SSF) in case of a sensor fault and makes the overall system more robust against the sensor malfunctions. Several simulations are performed, and the performance of the presented system is tested against two different fault types as noise increment and continuous bias in attitude sensors.
Anahtar Kelime: Nanosatellite attitude estimation adaptive Kalman filtering fault magnetometer sun sensor

Tek Ölçekleme Faktörlü Uyarlanabilir Kalman Filtresi Kullanarak Bir Nanouydu için Hata Toleranslı Yönelim Tahmini

Öz:
Bu çalışmada, bir nanouydunun yönelimini tahmin etmek için TRIAD ve uyarlamalı bir genişletilmiş Kalman süzgeci (GKS) algoritmasının birleştirildiği entegre bir uyarlamalı TRIAD/GKS yönelim tahmin algoritması sunulmaktadır. TRIAD tarafından manyetometre ve güneş sensörü ölçümleri kullanılarak üretilen kuaterniyon seti, uyarlanabilir GKS'ye girdi olarak sağlanır. Böylece GKS’nin sisteme getirmiş olduğu hesaplama yükü nispeten azaltılmış olur. Daha sonra uyarlanabilir GKS, TRIAD çözümündeki gürültüyü azaltarak nihai kuaterniyon setini verir. Uyarlanabilir GKS aynı zamanda tek ölçekleme faktörü (TÖF) kullanarak, yönelim sensörlerinde oluşabilecek bir hata durumunda ölçüm gürültüsü kovaryans matrisini yeniden ayarlayarak süzgeci arızalara karşı daha dirençli hale getirir. Önerilen entegre sistemin performansı, yönelim sensörlerinde devamlı bayas olması ya da sensör gürültülerinin aniden artması durumlarına karşı çeşitli benzetimlerle test edilmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. Tafazoli, A Study of On-orbit Spacecraft Failures, Acta Astronautica 64(2-3), 195-205 (2008).
  • [2] A. Poghosyan and A. Golkar, Cubesat Evolution: Analyzing CubeSat Capabilities for Conducting Science Missions, Progress in Aerospace Sciences 88, 59-83 (2017).
  • [3] D. Kucharski, G. Kirchner, and F. Koidl, Spin Parameters of Nanosatellite BLITS Determined from Graz 2 kHz SLR Data, Advances in Space Research 48, 343-348 (2011).
  • [4] A. Friedman et al., Arizona State University Satellite 1 (ASUSat1): Low-Cost, Student-Designed Nanosatellite, Journal of Spacecraft and Rockets 39(5), 740-748 (2002).
  • [5] H. D. Black, A Passive System for Determining the Attitude of a Satellite, AIAA Journal 2(7), 1350-1351 (1964).
  • [6] M. D. Shuster and S. D. Oh, Three-Axis Attitude Determination from Vector Observations, Journal of Guidance, Control, and Dynamics 4(1), 70-77 (1981).
  • [7] G. Wahba, Problem 65-1: A Least Squares Estimate of Satellite Attitude, Society for Industrial and Applied Mathematics Review 7(3), 409 (1965).
  • [8] P. B. Davenport, A Vector Approach to the Algebra of Rotations with Applications, NASA Goddard Space Flight Center, Greenbelt, MD, USA, Tech. Rep. NASA-TN-D-4696 (1968).
  • [9] F. L. Markley, Attitude Determination Using Vector Observations and the Singular Value Decomposition, Journal of the Astronautical Sciences 38(3), 245-258 (1988).
  • [10] D. Cilden and C. Hacizade, Small Satellite Attitude Determination Methods with Vector Observations, Journal of Aeronautics and Space Technologies 7(2), 35-43 (2014).
  • [11] F. L. Markley and D. Mortari, Quaternion Attitude Estimation Using Vector Observations, Journal of the Astronautical Sciences 48, 359-380 (2000).
  • [12] E. J. Lefferts, F. L. Markley, and M. D. Shuster, Kalman Filtering for Spacecraft Attitude Estimation, Journal of Guidance, Control, and Dynamics 5(5), 417-429 (1982).
  • [13] F. L. Markley and J. L. Crassidis, Fundamentals of Spacecraft Attitude Determination and Control. New York, NY: Springer New York, 2014.
  • [14] P. Sekhavat, Q. Gong, and I. Ross, "NPSAT1 Parameter Estimation Using Unscented Kalman Filtering," in 2007 American Control Conference, New York, NY, USA, July 9-13, 2007, IEEE, 2007. pp. 4445-4451.
  • [15] J. L. Crassidis, F. L. Markley, and Y. Cheng, Survey of Nonlinear Attitude Estimation Methods, Journal of Guidance, Control, and Dynamics 30(1), 12-28 (2006).
  • [16] J. C. Springman and J. W. Cutler, Flight Results of a Low-cost Attitude Determination System, Acta Astronautica 99, 201-214 (2014).
  • [17] M. L. Psiaki, F. Martel, and P. K. Pal, Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data, Journal of Guidance, Control, and Dynamics 13(3), 506-514 (1990).
  • [18] C. Hajiyev and M. Bahar, Attitude Determination and Control System Design of the ITU-UUBF LEO1 Satellite, Acta Astronautica 52, 493-499 (2003).
  • [19] C. Hajiyev, D. Cilden, and Y. Somov, Integrated SVD/EKF for Small Satellite Attitude Determination and Rate Gyro Bias Estimation, IFAC-PapersOnLine 48(9), 233-238 (2015).
  • [20] T. Ainscough, R. Zanetti, J. Christian, and P. D. Spanos, Q-Method Extended Kalman Filter, Journal of Guidance, Control, and Dynamics 38(4), 752-760 (2015).
  • [21] C. Hajiyev and H. E. Soken, Fault Tolerant Attitude Estimation for Small Satellites. Boca Raton, FL: CRC Press, 2021.
  • [22] P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering: A Practical Approach 3rd Edition. Reston, VA: American Institute of Aeronautics and Astronautics, 2009.
  • [23] C. Hajiyev, Adaptive Filtration Algorithm with the Filter Gain Correction Applied to Integrated INS/Radar Altimeter, Proceedings of IMechE Part G: Journal of Aerospace Engineering 221, 847-855 (2007).
  • [24] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation System. Norwood, MA: Artech House Publishers, 2007.
APA Kinatas H, Hajiyev C (2022). Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. , 74 - 93.
Chicago Kinatas Hasan,Hajiyev Chingiz Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. (2022): 74 - 93.
MLA Kinatas Hasan,Hajiyev Chingiz Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. , 2022, ss.74 - 93.
AMA Kinatas H,Hajiyev C Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. . 2022; 74 - 93.
Vancouver Kinatas H,Hajiyev C Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. . 2022; 74 - 93.
IEEE Kinatas H,Hajiyev C "Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor." , ss.74 - 93, 2022.
ISNAD Kinatas, Hasan - Hajiyev, Chingiz. "Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor". (2022), 74-93.
APA Kinatas H, Hajiyev C (2022). Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. Havacılık ve Uzay Teknolojileri Dergisi, 15(2), 74 - 93.
Chicago Kinatas Hasan,Hajiyev Chingiz Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. Havacılık ve Uzay Teknolojileri Dergisi 15, no.2 (2022): 74 - 93.
MLA Kinatas Hasan,Hajiyev Chingiz Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. Havacılık ve Uzay Teknolojileri Dergisi, vol.15, no.2, 2022, ss.74 - 93.
AMA Kinatas H,Hajiyev C Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. Havacılık ve Uzay Teknolojileri Dergisi. 2022; 15(2): 74 - 93.
Vancouver Kinatas H,Hajiyev C Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor. Havacılık ve Uzay Teknolojileri Dergisi. 2022; 15(2): 74 - 93.
IEEE Kinatas H,Hajiyev C "Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor." Havacılık ve Uzay Teknolojileri Dergisi, 15, ss.74 - 93, 2022.
ISNAD Kinatas, Hasan - Hajiyev, Chingiz. "Fault Tolerant Attitude Estimation for a Nanosatellite Using Adaptive Kalman Filter with Single Scaling Factor". Havacılık ve Uzay Teknolojileri Dergisi 15/2 (2022), 74-93.